• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL]Calcular área y=x^2

[INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:07

Estou com dúvidas neste exercício:
Seja R a região limitada pela parábola y={x}^{2}, pela reta y = 2x – 1 e pelo eixo x. Encontre o valor da área R.
Não sei se é pra calcular apenas a área acima do eixo x ou abaixo...pois a reta passa por -1 no eixo y e é tangente a parábola no ponto (1,1)...
Desde já, agradeço quem ajudar.
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 02:19

Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif
graph
graph (2).gif (3.96 KiB) Exibido 1061 vezes
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:34

Russman escreveu:Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif



Ele quer que você calcule a areazinha em forma "quase" triangular, alí.

graph (2).gif
[/quote]


Então eu preciso calcular em função do y?
fazer x=\sqrt[]{y} e x=
\frac{y+1}{2}, ficando \int_{0}^{1}\frac{y+1}{2}-{y}^{\frac{1}{2}} dy ...tá certo o q eu fiz ou fiz besteira?
o resultado deu "\frac{1}{12}"
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 02:48

Pode fazer assim como tu fez, pq se deu \frac{1}{12} deve estar certo.

Eu faria a integral

A = \int_{0}^{1}x^2dx - \int_{\frac{1}{2}}^{1}(2x-1)dx = \frac{1}{12}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor krtc » Qua Jul 24, 2013 02:54

Russman escreveu:Pode fazer assim como tu fez, pq se deu \frac{1}{12} deve estar certo.

Eu faria a integral

A = \int_{0}^{1}x^2dx - \int_{\frac{1}{2}}^{1}(2x-1)dx = \frac{1}{12}


Entendi! Eu pegava o intervalo errado para a reta!
Muito obrigado Russman!
krtc
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 24, 2013 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [INTEGRAL]Calcular área y=x^2

Mensagempor Russman » Qua Jul 24, 2013 03:13

Não, na integral em y o intervalo é de 0 à 1. Você fez certo. Só errou o sinal na integral que você postou.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron