• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analitica] Duvidas em alguns exercicios

[Geometria Analitica] Duvidas em alguns exercicios

Mensagempor Gustavo Reis » Qui Jun 27, 2013 13:50

Oi, tive uma prova hoje pela manha e achei algumas respostas meio estranhas, tem como alguém me dizer se minhas respostas estão corretas? Obg.

1 - Descubra K1, K2 e K3 em (0,8,-8) = K1(5,-1,1) + K2(-4,3,2) + K3(-2,-5,8)

Achei o sistema abaixo
5K1 - 4K2 -2K3 = 0
-K1 + 3K2 - 5K3 = 8
K1 + 2K2 8K3 = -8

Fiz pelo método de Cramer e minha resposta final foi:
K1 = -16
K2 = -120
K3 = 200

Alguém sabe me dizer se eu acertei?

2 - Descubra um ponto P equidistante ao ponto A(7,-3,2) e B(3,5,-5) no eixo das abcissas

Nesse exercício eu fiz PA = PB e achei P(3/8,0,0)

Alguns colegas acharam um resultado diferente, alguém sabe esse?
Gustavo Reis
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 20, 2013 19:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng Eletrica
Andamento: cursando

Re: [Geometria Analitica] Duvidas em alguns exercicios

Mensagempor DanielFerreira » Sáb Jun 29, 2013 10:22

1)

\\ (0, 8, - 8) = k_1(5, - 1, 1) + k_2(- 4, 3, 2) + k_3(- 2, - 5, 8) \\ (0, 8, - 8) = (5k_1 - 4k_2 - 2k_3, - k_1 + 3k_2 - 5k_3, k_1 + 2k_2 + 8k_3) \\ \begin{cases} 5k_1 - 4k_2 - 2k_3 = 0 \\ - k_1 + 3k_2 - 5k_3 = 8 \\ k_1 + 2k_2 + 8k_3 = - 8 \end{cases}

Calculemos o determinante...

\\ \begin{vmatrix} 5 & - 4 & - 2 \\ - 1 & 3 & - 5 \\ 1 & 2 & 8 \end{vmatrix} = D \\\\\\ D = \begin{vmatrix} 5 & - 4 & - 2 & | & 5 & - 4 \\ - 1 & 3 & - 5 & | & - 1 & 3 \\ 1 & 2 & 8 & | & 1 & 2 \end{vmatrix} \\\\ D = 120 + 20 + 4 + 6 + 50 - 32 \\ D = 168


Calculemos D_x que na verdade é D_{k_1}:

\\ \begin{vmatrix} 0 & - 4 & - 2 \\ 8 & 3 & - 5 \\ - 8 & 2 & 8 \end{vmatrix} = D_{k_1} \\\\\\ D_{k_1} = \begin{vmatrix} 0 & - 4 & - 2 & | & 0 & - 4 \\ 8 & 3 & - 5 & | & 8 & 3 \\ - 8 & 2 & 8 & | & - 8 & 2 \end{vmatrix} \\\\ D_{k_1} = 0 - 160 - 32 - 48 + 0 + 256 \\ D_{k_1} = 16

Para encontrar o valor de k_1 devemos fazer k_1 = \frac{D_{k_1}}{D}.

\\ k_1 = \frac{D_{k_1}}{D} \Rightarrow k_1 = \frac{16^{\div 8}}{168^{\div 8}} \Rightarrow \boxed{k_1 = \frac{2}{21}}


Calculemos D_y que na verdade é D_{k_2}:

\\ \begin{vmatrix} 5 & 0 & - 2 \\ - 1 & 8 & - 5 \\ 1 & - 8 & 8 \end{vmatrix} = D_{k_2} \\\\\\ D_{k_2} = \begin{vmatrix} 5 & 0 & - 2 & | & 5 & 0 \\ - 1 & 8 & - 5 & | & - 1 & 8 \\ 1 & - 8 & 8 & | & 1 & - 8 \end{vmatrix} \\\\ D_{k_2} = 320 - 0 - 16 + 16 - 200 + 0 \\ D_{k_2} = 120

Para encontrar o valor de k_2 devemos fazer k_2 = \frac{D_{k_2}}{D}.

\\ k_2 = \frac{D_{k_2}}{D} \Rightarrow k_2 = \frac{120^{\div 24}}{168^{\div 24}} \Rightarrow \boxed{k_2 = \frac{5}{7}}


Para encontrar k_3 o raciocínio é análogo, tente concluir!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}