por Jasbinschek » Qua Mai 29, 2013 01:17
Então, eu peguei uma integral hoje que eu não consegui resolver, procurei na internet e achei o resultado dela, mas eu gostaria de saber o motivo, como eu chego nela?
o nosso querido Wolfram me disse isso:
http://www.wolframalpha.com/input/?i=in ... -x%29%29dxa integral é a seguinte:

alguém pode me explicar como isso funciona?
obrigado.
-
Jasbinschek
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 29, 2013 01:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da comp.
- Andamento: cursando
por temujin » Qua Mai 29, 2013 11:04
Acho que dá pra fazer por partes.
Vejamos:


Agora, um detalhe. Essa é uma função gamma, né? Se integrar de 0 a mais infinito ela vai ter essa cara:

Eu não conheço a demonstração, mas acho que não deve ser difícil de encontrar.
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por Jasbinschek » Qua Mai 29, 2013 20:11
Eu tentei por partes, mas na parte que fica integral de Vdu é

afinal o u tem que ser igual a

então cresce infinitamente...
e sim, é uma função gamma
-
Jasbinschek
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 29, 2013 01:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da comp.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral com exponencial
por suziquim » Ter Mai 10, 2011 18:07
- 2 Respostas
- 3226 Exibições
- Última mensagem por suziquim

Qua Mai 11, 2011 11:08
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Exponencial
por raulalves_ » Qua Abr 18, 2012 01:49
- 1 Respostas
- 1666 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:59
Cálculo: Limites, Derivadas e Integrais
-
- (integral) função exponencial
por manuel_pato1 » Sex Dez 07, 2012 20:08
- 6 Respostas
- 3862 Exibições
- Última mensagem por manuel_pato1

Sáb Dez 08, 2012 15:02
Cálculo: Limites, Derivadas e Integrais
-
- integral de função exponencial
por vivima » Sex Mai 09, 2014 13:36
- 2 Respostas
- 2017 Exibições
- Última mensagem por vivima

Sex Mai 09, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] integral definida com exponencial
por beel » Dom Nov 20, 2011 22:38
- 3 Respostas
- 2925 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 16:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.