• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo

Cálculo

Mensagempor marinalcd » Sex Abr 19, 2013 11:48

Não estou conseguindo resolver este problema:

Seja S a superfície da esfera x²+y²+z²=a², situada no interior do cilindro x²+y² = ay, com a > 0. Determine o valor de a de modo que A(S)= 18(\Pi-2) unidades de área.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 19, 2013 16:15

a integral de superficie da esfera é dada por

\int\int R^2cos(\phi)d\theta d\phi

então voce tem que determinar os limites de integração, temos que
R=a

x=acos(\phi)cos(\theta)

x=acos(\phi)sen(\theta)

substituindo na equação do cilindro temos

a^2cos^2(\phi)cos^2(\theta)+a^2cos^2(\phi)cos^2(\theta)=a^2cos(\phi)cos(\theta)

a^2cos^2(\phi)=a^2cos(\phi)cos(\theta)

cos(\phi)=cos(\theta)

\phi=\theta

então a integral fica

2\int_{0}^{\frac{\pi}{2}}\int_{-\phi}^{\phi} a^2cos(\phi)d\theta d\phi

tente resolver a integral e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Sex Abr 19, 2013 16:42

Obrigada pelo auxílio!

Seguindo o seu raciocínio, estou resolvendo aqui, mas na hora de substituir na equação do cilindro o meu resultado deu diferente.
Acho que você só substituiu o valor de x. ...
Agora vou tentar resolver a integral!

Valeu!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 19, 2013 18:00

é verdade, na realidade eu substitui errado o valor de y

seria

a^2cos^2(\phi)cos^2(\theta)+a^2cos^2(\phi)sen^2(\theta)=a^2cos(\phi)sen(\theta)

a^2cos^2(\phi)=a^2cos(\phi)sen(\theta)

cos(\phi)=sen(\theta)

cos(\phi)=cos\left(\theta-\frac{\pi}{2}\right)

então

\phi=\theta-\frac{\pi}{2}

\theta=\phi+\frac{\phi}{2}

portanto a integral fica

2\int_{0}^{\frac{\pi}{2}}\int_{-\phi-\frac{\pi}{2}}^{\phi+\frac{\pi}{2}}a^2cos(\phi)d\theta d\phi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Seg Abr 22, 2013 20:32

Olá! Consegui fazer até a substituição na equação do cilindro e cheguei em:

cos\phi = sen\Theta

Mas não entendi como você determinou os limites de integração. Não consegui sair dessa relação.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Ter Abr 23, 2013 11:19

então utilizando aqulea relação de seno e cosseno que eu coloquei voce chega em

\theta=\phi+\frac{\pi}{2}

como se trata de um cilindro, pela simetria circular dele agente tem então que -\phi-\frac{\pi}{2}\leq\theta\leq\phi+\frac{\pi}{2}

o o angulo \phi se determina pelo limite da esfera
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Qua Abr 24, 2013 14:14

Eu costumo colocar o \theta determinado pelo limite da esfera.

Aí, para achar o \phi eu calculei o seno de teta (com os limites da esfera) e calculei a inversa do cossseno, encontrando assim os limites de \phi.

Pode ser assim? Pois deu diferente do seu, logo a integral dará diferente.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Qua Abr 24, 2013 14:42

a integral vai ser diferente, mais o valor final tem que ser igual
de qualquer forma faça do jeito que ficar mais facil pra voce visualizar os limites
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Qua Abr 24, 2013 14:47

Só uma última coisa: na minha integral não aparece esse 2 multiplicando. Como você achou?
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Qua Abr 24, 2013 14:49

esse 2 é porque essa integral é so para a parte de cima da esfera mais o cilindro corta a esfera na parte de baixo tambem sendo a area das duas partes identicas portanto multipliquei por 2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Cálculo

Mensagempor marinalcd » Sex Abr 26, 2013 18:00

Meu professor falou que deveria utilizar a variação de teta: 0\leq\theta\leq\pi

E que deveria por coordenadas esféricas a equação da interseção para encontrar a variação de \phi, que dependerá de \theta.

Mas ao substituir na equação, cheguei na seguinte relação:
cos^{2}\phi = 1- cos\phi.sen\theta

E não consegui determinar a variação de \phi.
Não sei se fiz errado, mas não consegui chegar nessa variação que você chegou.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Cálculo

Mensagempor young_jedi » Sex Abr 26, 2013 18:19

eu não entendi como voce chegou nesta relação
de qualquer forma voce pode fazer a integral para

0<\theta<\pi

e

-\theta+\frac{\pi}{2}<\phi<\theta-\frac{\pi}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?