• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Convergência de série

Convergência de série

Mensagempor ThallesAlencar » Seg Abr 08, 2013 14:47

gostaria de saber se a série \sum_{0}^{infinity} sin (n\pi\frac{1}{2})n\frac{1}{e^n} converge ou diverge e qual foi o método usado para saber.
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Convergência de série

Mensagempor young_jedi » Seg Abr 08, 2013 20:30

primeiro pelo teste da comparação podemos perceber que

\sum_{n=0}^{\infty}\frac{sin\left(\frac{n\pi}{2}\right)n}{e^n}<\sum_{n=0}^{\infty}\frac{n}{e^n}

pois como seno varia de -1 ate 1 então cada termo da primeira serie e menor ou igual a cada termo da segunda serie

portanto temos que se a segunda serie converge a primeira tambem converge

analisando a segunda pelo teste da razão temos

\lim_{n\to\infty}\frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}}=\frac{n+1}{e.e^n.n}

\lim_{n\to\infty}\frac{n+1}{n.e}

\lim_{n\to\infty}=\frac{n}{ne}+\frac{1}{ne}

\lim_{n\to\infty}=\frac{1}{e}+\frac{1}{ne}=\frac{1}{e}

como 1/e é menor que 1 então a serie converge
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Convergência de série

Mensagempor ThallesAlencar » Ter Abr 09, 2013 09:01

Obrigado; ótima resolução!
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.