• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Convergência de série

Convergência de série

Mensagempor ThallesAlencar » Seg Abr 08, 2013 14:47

gostaria de saber se a série \sum_{0}^{infinity} sin (n\pi\frac{1}{2})n\frac{1}{e^n} converge ou diverge e qual foi o método usado para saber.
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Convergência de série

Mensagempor young_jedi » Seg Abr 08, 2013 20:30

primeiro pelo teste da comparação podemos perceber que

\sum_{n=0}^{\infty}\frac{sin\left(\frac{n\pi}{2}\right)n}{e^n}<\sum_{n=0}^{\infty}\frac{n}{e^n}

pois como seno varia de -1 ate 1 então cada termo da primeira serie e menor ou igual a cada termo da segunda serie

portanto temos que se a segunda serie converge a primeira tambem converge

analisando a segunda pelo teste da razão temos

\lim_{n\to\infty}\frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}}=\frac{n+1}{e.e^n.n}

\lim_{n\to\infty}\frac{n+1}{n.e}

\lim_{n\to\infty}=\frac{n}{ne}+\frac{1}{ne}

\lim_{n\to\infty}=\frac{1}{e}+\frac{1}{ne}=\frac{1}{e}

como 1/e é menor que 1 então a serie converge
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Convergência de série

Mensagempor ThallesAlencar » Ter Abr 09, 2013 09:01

Obrigado; ótima resolução!
ThallesAlencar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 08, 2013 14:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.