• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(Efomm)Equação logaritmica

(Efomm)Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 13:30

20-)se log_c{a}=3elog_c{b}=5,então o valor de log_c{\left(\frac{{\sqrt[3]{a}\sqrt[5]{b^2}}}{c.\sqrt{c}})\right
a-)1/6
b-)5/6
c-)7/6
d-)4/3
e-)3/2
a raiz do b é 5 ta meio apagado,e a do a é 3

desculpa pessoal por postar muitas perguntas é que eu não to consiguindo fazer,e num tem a ninguem pra perguntar

vlw
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (Efomm)Equação logaritmica

Mensagempor DanielRJ » Qui Out 14, 2010 14:31

c^3=a

c^5=b

1º membro cima a^{\frac{1}{3}}=(c^3)^{\frac{1}{3}}=c

2° membro cimab^{\frac{2}{5}}=(c^5)^{\frac{2}{5}}=c^2


log_c\frac{c.c^2}{c.c^{\frac{1}{2}}}

log_c\frac{c^3}{c^{\frac{3}{2}}}

Fazendo a operação:

3-\frac{3}{2}=\frac{3}{2}

log_cc^\frac{3}{2}

1° maneira: corta a base e o logaritmano fica:
\frac{\frac{3}{2}}{1}= \frac{3}{2}

2° Maneira: Utiliza a propriedade de expoente do lagaritmano: log_ab^x = xlog_ab

log_cc^\frac{3}{2}=\frac{3}{2}.log_cc=\frac{3}{2}.1=\frac{3}{2}


Pronto ta ai qualquer coisa um prof comenta vlw :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (Efomm)Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 17:24

Ooo danielcdd
no gabarito aqui fala que é a ALTERNATIVA A
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (Efomm)Equação logaritmica

Mensagempor MarceloFantini » Qui Out 14, 2010 17:54

\log_c \left( \frac{\sqrt[3]{a} \cdot \sqrt[5]{b^2}}{c \cdot \sqrt{c}} \right) = \log_c \left( \frac{\sqrt[3]{a} \cdot \sqrt[5]{b^2}}{\sqrt{c^3}} \right)

Pela propriedade da divisão:

\log_c \left( \frac{\sqrt[3]{a} \cdot \sqrt[5]{b^2}}{\sqrt{c^3}} \right) = \log_c (\sqrt[3]{a} \cdot \sqrt[5]{b^2}) - \log_c \sqrt{c^3}

\sqrt{c^3} = c^{\frac{3}{2}} \rightarrow \log_c \sqrt{c^3} = \log_c c^{\frac{3}{2}} = \frac{3}{2}

Pela propriedade do produto:

\log_c (\sqrt[3]{a} \cdot \sqrt[5]{b^2}) = \log_c \sqrt[3]{a} + \log_c \sqrt[5]{b^2}

\sqrt[3]{a} = a^{\frac{1}{3}} \rightarrow \log_c \sqrt[3]{a} = \log_c a^{\frac{1}{3}} = \frac{1}{3} \cdot \log_c a = \frac{1}{3} \cdot 3 = 1

\sqrt[5]{b^2} = b^{\frac{2}{5}} \rightarrow \log_c \sqrt[5]{b^2} = \log_c b^{\frac{2}{5}} = \frac{2}{5} \cdot \log_c b = \frac{2}{5} \cdot 5 = 2

Assim, a conta fica:

\log_c \sqrt[3]{a} + \log_c \sqrt[5]{b^2} - \log_c \sqrt{c^3} = 1 +2 - \frac{3}{2} = 3 - \frac{3}{2} = \frac{6}{2} - \frac{3}{2} = \frac{6-3}{2} = \frac{3}{2}

Concordo com a resposta do Daniel. São dois jeitos diferentes de resolver a questão e ambos bateram a resposta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (Efomm)Equação logaritmica

Mensagempor natanskt » Qui Out 14, 2010 20:12

ok!
então são dois contra o gabarito
já encontrei perguntas erradas no gabarito,então essa é uma delas

valeu!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?