• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equaçoes exponenciais

equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 13:37

24-)(EEAER) os valores de \left( \sqrt{\sqrt[3]{5}\sqrt{5}\right) ^8 e 2^{-3/4} é?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Elcioschin » Qui Out 07, 2010 14:53

Não está dando para entender. Por favor melhore.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 15:09

O resultado é:
\frac{2*5\frac{8}{3}}{e\frac{3}{4}}

ou resolvendo aproximadamente:

69.0604
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor MarceloFantini » Qui Out 07, 2010 15:31

Rogério, não sei se minha interpretação está correta, mas eu enxerguei dessa maneira: os valores de \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 e 2^{-\frac{3}{4}} são?

\left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8 = \left( \sqrt{ \sqrt[6]{5^5} } \right)^8 = \left( \sqrt[12]{5^5} \right)^8 = 5^{\frac{10}{3}} = 5^3 \cdot \sqrt[3]{5}

2^{-\frac{3}{4}} = \frac{1}{2^{\frac{3}{4}}} = \frac{1}{\sqrt[4]{2^3}} = \frac{1}{\sqrt[4]{8}}

Cabe ao Natan esclarecer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 16:33

OOo galera tentei fazer do melhor jeito possivel,sou novato no latex,essa raiz quadrada do cinco encobre o o outro 5 é igual na primeira que encobre todos,
as alternativas são"
a-)25\frac{\sqrt[4]{2}}{2}
b-)5\frac{\sqrt[4]{2}}{2}
c-)5{\sqrt[4]{8}}
d-)a-)25{\sqrt[4]{8}}

está falando que dá alternativa A!

me ajuda aew pessoal,por favor podem fazer sem simplificar nada
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 16:37

Olá Fantini,

Realmente fiz confusão pois considerei como \left( \sqrt { \sqrt[3]{5} \cdot \sqrt[3]{5} } \right)^8*{2e^{-\frac{3}{4}}

Não reparei que a raiz cubica \sqrt[3]{5} só no primeiro termo, outra coisa considerei o "e" como logaritmo natural na base e, afinal ele pergunto: "a resposta é?" Tudo no singular.

Refazendo desta forma como uma única conta: \left( \sqrt { \sqrt[3]{5} \cdot \sqrt{5} } \right)^8*{e*2^{-\frac{3}{4}}

Fica

\frac{e*5\frac{10}{3}}{2\frac{3}{4}} = 345,4793 em decimal

Se forem duas contas como voce colocou está certíssimo o teu calculo.
Desculpe minha confusão ai, grande abraço.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:11

Agora sim vamos lá,

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Rogerio Murcila » Qui Out 07, 2010 17:25

Desculpe não coloquei os passos:

\left( \sqrt { \sqrt[3]{5\sqrt{5}}} \right)^8*{2^{-\frac{3}{4}}

Fica

{2}^{-3/4}=\frac{1}{2}\sqrt[4]{2}

{\sqrt[3]{5\sqrt[2]{5}}}^{4} = 25

25\frac{\sqrt[4]{2}}{2}= 14,865 em decimal
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D