• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Abr 06, 2021 15:21

(ITA-1959)mostre se o enunciado é verdadeiro.
se m e p sao numeros inteiros positivos tais que o numero de combinaçoes de m objetos p a p seja igual ao numero de combinaçoes de m objetos (p-1) a (p-1),entao m é necessariamente impar.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Ter Abr 06, 2021 15:37

pelo o enunciado teremos

{C}_{n,p}={C}_{n,(p-1)}

logo

n!/(p!.(n-p)!)=n!/((p-1)!.(n-(p-1)!)\Rightarrow

1/(p!.(n-p)!)=1/((p-1)!.(n-(p-1)!)\Rightarrow

p!.(n-p)!=(p-1)!.(n-(p-1)!

p!.(n-p)!)=(p-1)!p.(n-(p-1)!.n=(p-1)!.(n-(p-1)!\Rightarrow

p.(n-p)=1\Rightarrow n.p-p^2=1\Rightarrow p^2-n.p+1=0

para se ter raizes de p,teriamos que ter

\Delta \succeq 0\Rightarrow n^2-4\succeq 0\Rightarrow

n\succeq 2
pois n é inteiro positivo
ou ainda

n.p-p^2=1\Rightarrow p.n={p}^{2}+1\Rightarrow

n=p+(1/p)

para se ter n inteiro positivo,teriamos que ter

p=1

logo

adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.