• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PUC-SP

PUC-SP

Mensagempor luanxd » Dom Fev 28, 2010 03:05

O conjunto de soluções Inteiras da equação \sqrt[]{4x+1}=2x-1:
a){2}
b{0,2}
c){o,1/2}
d){0}
e){1/2}

Obrigado pela atenção!
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: PUC-SP

Mensagempor Cleyson007 » Dom Fev 28, 2010 09:04

Bom dia luanxd!

Segue resolução:

\sqrt[2]{4x+1}=2x-1

Elevando os dois lados ao quadrado (para sumir com a raiz), temos:

{\sqrt[2]({4x+1}})^{2}=(2x-1)^2

4x+1={4x}^{2}-4x+1

Resolvendo a equação do segundo grau:

{x}_{1}=0

{x}_{2}=2

Alternativa b está correta!

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: PUC-SP

Mensagempor MarceloFantini » Dom Fev 28, 2010 15:14

Boa tarde.

Cleyson, lembre-se da condição de existência:

4x +1 \geq 0

x \geq \frac{-1}{4}

Neste caso as duas raízes satisfazem, porém é preciso testá-las pra verem se as duas são soluções:

\sqrt {4.0 +1} = 2.0 -1

\sqrt {1} = -1

Absurdo. 0 não é raíz da equação. Vamos testar o 2:

\sqrt {4.2 +1} = 2.2 -1

\sqrt {9} = 3

Satisfaz a equação. Portanto, só 2 é raíz.

Resposta letra A.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: PUC-SP

Mensagempor Cleyson007 » Dom Fev 28, 2010 16:13

Boa tarde Fantini!

Realmente.. acabou passando despercebido..

Seria um absurdo se o 0 fosse raiz da equação, encontraria:

1 = -1

Obrigado por comentar :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: PUC-SP

Mensagempor luanxd » Dom Fev 28, 2010 17:32

Obrigado pela ajuda!
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.