por nakagumahissao » Ter Ago 18, 2015 12:26
O que já tentou fazer? Onde Parou? Qual foi a dúvida? [Ver regras do fórum por favor]"
Por favor, utilize o EDITOR DE FÓRMULAS para colocar as equações que facilita muito a compreensão de quem vai te ajudar.
Grato
Sandro
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por karenblond » Ter Ago 18, 2015 13:24
-
karenblond
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qua Mar 24, 2010 14:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por karenblond » Ter Ago 18, 2015 13:29
FAzendo o mmc e fatorando deu esse valor agora não consigo continuar

-
karenblond
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qua Mar 24, 2010 14:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por karenblond » Ter Ago 18, 2015 13:33
Parei nesse ponto agora como fazer para dividir o denominador e multiplicar pelo numarador

-
karenblond
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qua Mar 24, 2010 14:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por nakagumahissao » Ter Ago 18, 2015 14:53
Aguarde que estou respondendo. O texto é comprido e vai demorar um pouco!
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por nakagumahissao » Ter Ago 18, 2015 18:17
karenblond,
Muito bem! Ví que sabe fatorar corretamente. E já fez a parte mais difícil do problema! Vou colocar a equação abaixo:
![\frac{2x + 1}{x - 3} + \frac{2}{x^2 - 9} = 1 \;\;\;\;\;\; [1] \frac{2x + 1}{x - 3} + \frac{2}{x^2 - 9} = 1 \;\;\;\;\;\; [1]](/latexrender/pictures/c953fb41681e6bdd48ffce7ed2bd6758.png)
Apesar de ter feito corretamente a fatoração da segunda fração, houve um erro ao continuar o processo. Tente fazer da seguinte forma: Primeiramente Deixe o MMC colocado num canto da folha e olhe para o problema [1] novamente. Você vai precisar pegar o MMC obtido, dividir por cada um dos denominadores e multiplicar por cada um dos numeradores colocando tudo sobre uma só fração:
Reescrevendo a fração ficará:

Na primeira fração temos (x - 3) e na segunda, agora temos (x - 3)(x+3). Assim, o MMC será:

Dividindo-se esse MMC pelo denominador da primeira fração teremos:
![MMC = (x -3)(x+3) \Rightarrow \frac{(x -3)(x+3)}{(x -3)} = x + 3 \;\;\;\;\;\; [2] MMC = (x -3)(x+3) \Rightarrow \frac{(x -3)(x+3)}{(x -3)} = x + 3 \;\;\;\;\;\; [2]](/latexrender/pictures/1bc910e5ff2b656cf0a689c1d4069ae0.png)
Tudo bem até aqui? Olhando para esta divisão seria a mesma coisa se pegássemos um número qualquer, por exemplo 4 x 3 e dividíssemos por 4 e daria o 3; Ou ainda, como outro exemplo:

Muito bem, agora que temos o resultado da divisão do MMC pelo primeiro denominador, temos ainda que multiplicar pelo numerador daquela fração, que é 2x + 1! Recapitulado:
![MMC = (x -3)(x+3) \Rightarrow \frac{(x -3)(x+3)}{(x -3)} = x + 3 \;\;\;\;\;\; [2] MMC = (x -3)(x+3) \Rightarrow \frac{(x -3)(x+3)}{(x -3)} = x + 3 \;\;\;\;\;\; [2]](/latexrender/pictures/1bc910e5ff2b656cf0a689c1d4069ae0.png)
Pegando-se este resultado da divisão mostrado em [2] acima, ou seja, (x + 3), temos que multiplicá-lo pelo numerador (2x + 1). Fazendo esta multiplicação à parte, teremos:

Lembro que a multiplicação de expressões como essa funciona da seguinte forma. "Temos duas expressões: (x + 3) e (2x + 1); Pega-se o x da primeira expressão e multiplica-se pelo primeiro e pelo segundos termos da segunda expressão, respeitando-se os sinais e soma-se com o segundo termo da primeira multiplicado pelos primeiro e segundo termo da segunda expressao - Simplicando: O primeiro vezes o primeiro e o segundo mais o segundo vezes o primeiro e o segundo de novo".
Assim, +x vezes +2x mais +x vezes +1 mais +3 vezes +2x mais +3 vezes +1 que ficará da seguinte forma:
![(x + 3) (2x + 1) = \left[(+x) \times (+2x) + (+x) \times (+1) + (+3) \times (+2x) + (+3) \times (+1) \right] (x + 3) (2x + 1) = \left[(+x) \times (+2x) + (+x) \times (+1) + (+3) \times (+2x) + (+3) \times (+1) \right]](/latexrender/pictures/d7955bf68b400e7eb7e1c4fc0a17dbb2.png)
que dará:
![= 2x^{2} + x + 6x + 3 = 2x^2 + 7x + 3 \;\;\;\;\;\; [3] = 2x^{2} + x + 6x + 3 = 2x^2 + 7x + 3 \;\;\;\;\;\; [3]](/latexrender/pictures/b98f7e4cc57319b8807261c912e4df23.png)
Vou colocar agora esse resultado sobre a fração final. O MMC fica no denominador e o resultado [3] no numerador. Os pontinhos que deixei estão aí porque ainda não terminamos a conta ainda:
![\frac{2x + 1}{x - 3} + \frac{2}{x^2 - 9} = 1 \Leftrightarrow \frac{2x^2 + 7x + 3 \cdot \cdot \cdot }{(x - 3)(x + 3)} = 1 \;\;\;\; [4] \frac{2x + 1}{x - 3} + \frac{2}{x^2 - 9} = 1 \Leftrightarrow \frac{2x^2 + 7x + 3 \cdot \cdot \cdot }{(x - 3)(x + 3)} = 1 \;\;\;\; [4]](/latexrender/pictures/f0d25e18162268ca6ba0c093df3a654d.png)
Agora terminamos as operações necessárias com o MMC na primeira fração. Precisamos fazer o mesmo para a segunda. Essa será bem mais fácil porque:
![\frac{(x - 3)(x + 3)}{(x - 3)(x + 3)} = 1 \;\;\;\;\; [5] \frac{(x - 3)(x + 3)}{(x - 3)(x + 3)} = 1 \;\;\;\;\; [5]](/latexrender/pictures/4cf90534368418bfdebd07c4117d2b42.png)
Isto ocorre para qualquer valor de x tal que:

Se x fosse igual a 3 ou -3, o denominador ficaria - Para x = 3 => (x - 3)(x + 3) = (3 -3)(3 + 3) = 0 x 6 = 0 e para x = -3 ficaria (x - 3)(x + 3) = (-3 -3)(-3 + 3) = (-6) x 0 = 0 e sabemos que o denominador "Nunca" poderá ser zero porque causaria uma INDETERMINAÇÃO, por isso é importante frisar que

apesar de que no seu problema não será utilizado.
Agora que já sabemos que, para a SEGUNDA fração, divindo-se o MMC por (x - 3)(x+3) dá 1 (Veja [5]), agora só falta multiplicar esse "1" pelo numerador que na SEGUNDA fração é 2. Assim, 1 x 2 = 2 e assim substituir os três pontinhos que deixamos na expressão [4] acima da seguinte maneira:



Assim terminamos de trabalhar com estas frações. Aviso-lhe que a equação:

não possui solução Real (Conjunto dos números Reais). Há apenas solução no conjunto dos Números Complexos, por isso, deixarei como está.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda com equaçao de segundo grau
por jmontenegro » Dom Fev 19, 2012 12:04
- 1 Respostas
- 1459 Exibições
- Última mensagem por fraol

Dom Fev 19, 2012 22:58
Funções
-
- Equação do segundo grau, ajuda.
por LuizCarlos » Dom Mai 13, 2012 13:02
- 2 Respostas
- 1833 Exibições
- Última mensagem por LuizCarlos

Dom Mai 13, 2012 17:17
Álgebra Elementar
-
- equaçao de segundo grau ajuda por favor
por semessa » Sáb Mai 25, 2013 09:19
- 1 Respostas
- 2090 Exibições
- Última mensagem por e8group

Sáb Mai 25, 2013 11:32
Equações
-
- Ajuda urgente problema equação de 2º grau Fórmula de Bháskar
por raquelcattelam » Sex Mai 15, 2009 15:16
- 2 Respostas
- 3589 Exibições
- Última mensagem por raquelcattelam

Sex Mai 15, 2009 20:04
Sistemas de Equações
-
- função do segundo grau, urgente não sei como começar
por eri » Sex Mar 15, 2013 23:31
- 1 Respostas
- 3588 Exibições
- Última mensagem por XILVANA

Qua Abr 10, 2013 13:20
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.