• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função cosseno.

Função cosseno.

Mensagempor lucassouza » Qua Jan 28, 2015 16:52

Gente, minha dúvida é simples, só queria saber como faço para eliminar esse radical, não estou conseguindo desenvolver a questão.
Anexos
Untitled.jpg
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Função cosseno.

Mensagempor Russman » Qua Jan 28, 2015 19:58

Se a e b são dois arcos trigonométricos então é verdade a identidade

\cos (a+b) = \cos(a) \cos(b) - \sin(a) \sin(b).

Daí, fazendo a=b=x, temos

\cos(x+x) = \cos(2x) =  \cos(x) \cos(x) - \sin(x) \sin(x) = \cos ^2 (x) - \sin ^2 (x)

Assim,

1 - \cos(2x) = 1 -   \cos ^2 (x) + \sin ^2 (x) = \sin ^2 (x) + \sin ^2 (x) = 2 \sin ^2 (x)

e

1 + \cos(2x) = 1 +   \cos ^2 (x) - \sin ^2 (x) = \cos ^2 (x) + \cos ^2 (x) = 2 \cos ^2 (x)

Portanto, já que 1-x^2 = (1+x)(1-x), temos

1 - \cos^2(2x) = (1+\cos(x)) (1-\cos(x)) = 4 . \sin^2 (x) . \cos^2 (x) = (2 \sin(x) \cos(x) )^2

Daí,

y = \sqrt{1 - \cos^2(2x)} = \sqrt{(2 \sin(x) \cos(x) )^2} = \left | 2 \sin(x) \cos(x) \right |

Mas, também, \sin(2x) = 2 \sin(x) \cos(x). Daí,

y = \left |  \sin(2x) \right |
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}