• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções - Inequações

Funções - Inequações

Mensagempor kellykcl » Seg Mar 17, 2014 20:42

Boa noite amigos do fórum!

1.Resolva a seguinte inequação: \frac{1}{x-3}\leq\frac{1}{2x+1}
Resolução:

\frac{1}{x-3}-\frac{1}{2x+1}\leq 0

Tirando o m.m.c dos denominadores:

\frac{2x+1-1(x-3)}{(x-3)(2x+1)}\leq 0\:\:\Rightarrow\frac{2x+1-x+3}{{2x}^{2}+x-6x-3}\leq 0\:\:\Rightarrow\frac{x+4}{{2x}^{2}-5x-3}\leq 0

Achando as Raízes:

(I)\,x+4=0\:\:\:\rightarrow x=-4

(II)\,{2x}^{2}-5x-3=0
\bigtriangleup=\left(-5\right)^{2}-4(2)(-3)
\bigtriangleup=49

>>>Bhaskara:
x=\frac{-(-5)\pm\sqrt{49}}{2.2}

x'\,=\frac{5+7}{4}=\frac{12}{4}=3

x"\,=\frac{5-7}{4}=\frac{-2}{4}= \frac{-1}{2}

quadro de sinais.JPG
Estudo dos sinais
quadro de sinais.JPG (12.64 KiB) Exibido 2246 vezes


S=\{x\in\Re|x\leq-4 \:\:ou -\frac{1}{2}<x<3\}

Gostaria que algum amigo mais safo em matemática, verificasse se minha resolução está correta (principalmente o estudo de sinais)!
obs.: Não tenho o gabarito!
Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Funções - Inequações

Mensagempor Russman » Seg Mar 17, 2014 21:24

Eu acho que você tenha feito um esforço tremendo pra algo simples.

Note que

\frac{1}{x-3}\leq \frac{1}{2x+1}\Rightarrow \frac{2x+1}{x-3}\leq 0.

Como sabido, a divisão de dois reais só será negativa se os mesmos tiverem sinais trocados. Assim, temos as possibilidades

(1) 2x+1\leq 0 ,\quad x-3> 0 ( aqui, x não pode ser 3)
(2) 2x+1 \geq  0 ,\quad x-3< 0

Daí, depois de resolver, retire o caso de x=-\frac{1}{2} pois é raiz do denominador da equação original como x=3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Funções - Inequações

Mensagempor ant_dii » Seg Mar 17, 2014 22:45

Bom, cuidado com a equivalência Russman. Tome x=-5 e verifique se vale a relação que você afirmou.
Na verdade ela poderia ter evitado somente o uso de Bháskara, uma vez que x-3 e 2x+1 já declaram os valores em que x se anula. Mas fez tudo correto.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Funções - Inequações

Mensagempor Russman » Seg Mar 17, 2014 22:53

ant_dii escreveu:Bom, cuidado com a equivalência Russman. Tome e verifique se vale a relação que você afirmou.


Era pra ser "\leq 1" na inequação! hahah Falta de atenção.

Desconsiderem aí.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Funções - Inequações

Mensagempor kellykcl » Ter Mar 18, 2014 10:11

Russman escreveu:Eu acho que você tenha feito um esforço tremendo pra algo simples.

Note que

\frac{1}{x-3}\leq \frac{1}{2x+1}\Rightarrow \frac{2x+1}{x-3}\leq 0.

Como sabido, a divisão de dois reais só será negativa se os mesmos tiverem sinais trocados. Assim, temos as possibilidades

(1) 2x+1\leq 0 ,\quad x-3> 0 ( aqui, x não pode ser 3)
(2) 2x+1 \geq  0 ,\quad x-3< 0

Daí, depois de resolver, retire o caso de x=-\frac{1}{2} pois é raiz do denominador da equação original como x=3.


Russman, você multiplicou em Cruz a inequação \frac{1}{x-3}\leq \frac{1}{2x+1} ?
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59