• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SÉRIE] teste de comparação para convergência

[SÉRIE] teste de comparação para convergência

Mensagempor magellanicLMC » Ter Jan 28, 2014 20:47

usando o teste da comparação para determinar se a série é convergente
\sum_{n=1}^{\infty} \frac{{sen}^{2}n}{{3}^{n}}
minha dúvida é em relação a qual série eu consigo calcular
magellanicLMC
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 28, 2014 20:35
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [SÉRIE] teste de comparação para convergência

Mensagempor e8group » Ter Jan 28, 2014 23:54

Lembre-se que função seno é limitada ,pois , |sin(x)| \leq 1 para todo x e em consequência

|sin^2(x)| = sin^2(x) \leq 1 o que implica \frac{sin^2n}{3^n} \leq \frac{1}{3^n}.Daí vem ,

\sum \frac{sin^2 n}{3^n} \leq  \sum \frac{1}{3^n} ... Tente conluir ..

Uma proposição válida para séries de termos não-negativos : Se existem c >0 e n_0 \in \mathbb{N} tal que a_n \leq  c \cdot b_n   \forall n > n_0 ,então a convergência de \sum  b_n implica a de \sum a_n.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [SÉRIE] teste de comparação para convergência

Mensagempor magellanicLMC » Sáb Fev 01, 2014 16:56

isso quer dizer que para tds comparação com função trigonométrica eu vou considerar o círculo trigonométrico como limitante? aliás para tg isso n valeria (corrija-me se estiver errada) eu prossegui e considerando que \frac{1}{{3}^{n}} é série geométrica com \left|r \right| < 1 ela converge, como a superior converge a inferior convergirá também, acredito que esteja certo.

muito obrigada santhiago!!
magellanicLMC
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 28, 2014 20:35
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [SÉRIE] teste de comparação para convergência

Mensagempor e8group » Sáb Fev 01, 2014 18:12

Não há de quê ... Tudo que você disse acima está correto .Este exemplo concreto ,me levou pensar em um resultado que possa ser útil para caso mais gerais. O raciocínio é bem simples ,vejamos :

Dadas as sequências de números reais (a_n) e (b_n) . Faz-se as seguintes hipóteses :

(1) A sequência (b_n) é limitada (convergente ou não)

(2) A sequência (a_n b_n) é de termos não-negativos .

(3) A série \sum a_n é absolutamente convergente .

Afirmamos que uma série de termo geral que satisfaz (1) ,(2) e (3) é convergente . Uma possível demonstração :

Por (1) , segue-se que existe M > 0 tal que |b_n| \leq M para todo n natural . Multiplicando-se esta desigualdade por |a_n| ,temos

|a_n| |b_n| = |a_n\cdot b_n|  \leq |a_n| \cdot M . E assim pela hipótese (2) , obtemos

a_n \cdot b_n \leq  M \cdot |a_n| para todo n e consequentemente ,

\sum   a_n \cdot b_n  \leq \sum M \cdot |a_n| . Daí de (3) resulta (pela proposição postei anteriormente) que a série \sum a_nb_n converge .

Aplicações :

(a)

Se considerarmos a_n = 1/3^n e b_n = sin^2(n) .As hipóteses (1) ,(2) e (3) são satisfeitas , logo a série de termo geral a_n b_n converge .

(b)

Se considerarmos a_n = 1/3^n e b_n = sin^3(n) .As hipóteses (1) e (3) são satisfeitas , entretanto a (2) não o é . Porém a série \sum |a_n b_n| é convergente (porque???) , logo a série \sum a_n b_n é absolutamente convergente e portanto ela é convergente .

Acredito que há resultados mais 'fortes' que este proposto cuja aplicabilidade seja superior , de qualquer forma espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [SÉRIE] teste de comparação para convergência

Mensagempor magellanicLMC » Sáb Fev 01, 2014 18:30

n tenho certeza mas na tua primeira condição ({b}_{n}) ser limitada n implicaria automaticamente que a série da soma de ({b}_{n}) será convergente? tendo um limite superior por exemplo,
acho que entendi o que tu disse, basicamente uma relação entre condição e definição, com certeza ajudou :-D
n esperava uma explicação tão detalhada! obrigada novamente.
magellanicLMC
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 28, 2014 20:35
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [SÉRIE] teste de comparação para convergência

Mensagempor e8group » Sáb Fev 01, 2014 19:03

magellanicLMC escreveu:n tenho certeza mas na tua primeira condição ({b}_{n}) ser limitada n implicaria automaticamente que a série da soma de ({b}_{n}) será convergente? tendo um limite superior por exemplo,
acho que entendi o que tu disse, basicamente uma relação entre condição e definição, com certeza ajudou :-D
n esperava uma explicação tão detalhada! obrigada novamente.


Na minha opinião seu primeiro argumento está incorreto . Vou responder com contra exemplo . Seja (b_n) limitada inferiormente por 1 e superiormente por 2 . Da hipótese , segue

b_n > 1 para todo n . Logo o termo geral não és um infinitesimal pelo que a série diverge .

Para ser mais exato ... Basta por b_n :=  sin(1/n)/n +1 .É claro que (b_n) é limitada , mas seu limite não zero .Logo a série diverge ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.