• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sub-espaço vetorial]

[Sub-espaço vetorial]

Mensagempor JauM » Qua Dez 04, 2013 14:15

Seja V um espaço vetorial. Dado um subconjunto S\neq\left[ \right] de V, provar que a intersecção
de todos os sub-espaços vetoriais de V que contêm S também é um sub-espaço vetorial
de V, sendo o menor sub-espaço de V que contém S.

Minha tentativa foi basicamente tentar a demonstração através da definição de sub-espaço, ou seja:

Seja W = { W1\capW2...\capWn} a intersecção de todos os sub-espaços vetoriais de V, tal que S \subsetW, temos:

a) 0 \in W, pois por hipotese W é sub-espaço, logo 0 \in S.

b) Seja u e v \in W. u + v \in W, logo u + v \in S.

c) Seja x \in \Re, e u \in W, logo xu \in W e portanto xu \in S.

Acho que essa demonstração está errada, e não sei como demonstrar que W é o menor sub-espaço de V. Se poderem me ajudar eu agradeço.
JauM
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 03, 2013 22:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Matematica
Andamento: cursando

Re: [Sub-espaço vetorial]

Mensagempor e8group » Qua Dez 04, 2013 16:15

Bom na minha opinião você errou em dizer " w por hipótese é sub-espaço vetorial de V " ,pois queremos exatamente mostrar-se que W é sub-espaço vetorial de V . Seguindo sua linha de raciocínio , sejam

W_1 , \hdots , W_n sub-espaços vetoriais de V os quais contém o subconjunto S de V .Prosseguindo, o menor subconjunto de V que contém S é o próprio S ,mas não necessariamente ele será sub-espaço de V .Provando-se que interseção de sub-espaços é também sub-espaço, poderemos afirmar que W \subset V que contém S e estar contido em todos W_i's será o menor sub-espaço de V ,ou seja , W = W_1 \cap \hdots \cap W_n = \bigcap_{i=1}^{n} W_i .

Agora é só mostrar que W é sub-espaço de V .

Dica : Utilize a hipótese deW_1 , \hdots , W_n serem sub-espaços de V .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Sub-espaço vetorial]

Mensagempor JauM » Qui Dez 05, 2013 14:37

Valeu, muito obrigado pela ajuda.
JauM
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 03, 2013 22:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: