• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral

[Cálculo] Integral

Mensagempor Pessoa Estranha » Qui Nov 28, 2013 16:08

Olá .... Gostaria de uma sugestão para resolver questões do seguinte tipo:

"Suponha f contínua em [-1,1]. Calcule \int_{0}^{1} f(2x-1)dx sabendo que \int_{-1}^{1} f(u)du = 5 ."

Sei que, nestes casos, é interessante usar o Teorema da Mudança de Variável. Por outro lado, não estou sabendo o que fazer com a própria função. É claro que isto só mostra que eu não entendi o verdadeiro valor do Teorema citado e soube aplicá-lo apenas nos casos mais gerais. Por gentileza, ajudem-me; preciso apenas de uma sugestão. Obrigada !
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor young_jedi » Qui Nov 28, 2013 18:38

fazendo

u=2x-1

primeiro vamos redefinir os intervalos de integração para a nova variavel

2.0-1=-1


2.1-1=1

temso que

du=2.dx

a integral vai ficar

\int_{-1}^{1}\frac{f(u)}{2}du
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Qui Nov 28, 2013 22:06

Olá ! Obrigada pela resposta !

Eu realmente havia escrito como você, mas fiquei na dúvida com relação à função mesmo. O fato de termos uma f(x) que define uma função não implicaria noutra resolução ? Não sei se a minha pergunta é absurda, mas, nos casos mais gerais tínhamos a função com a sua "cara", agora, temos apenas a f aplicada num ponto. Desculpe se estiver falando absurdos ....
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor young_jedi » Qui Nov 28, 2013 22:18

Tudo oque ocorreu foi uma mudança de variavel, antes tinhamos uma função de x agora temos um função de u, antes a integral era realizada em x agora sera realizada em u, nao tenho certeza se essa era sua duvida qualquer coisa pode comentar
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Sex Nov 29, 2013 13:34

Agora melhorou ! Valeu !

:y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: