por Rodrigopc1 » Sáb Nov 07, 2009 15:45
Um saco contém 13 bolinhas amarelas, 17 cor- de- rosa e 19 roxas. Uma pessoa de olhos vendados retirará do saco n bolinhas de uma só vez. Qual o menor valor de n de forma que se possa garantir que será retirado pelo menos um par de bolhinhas de cores diferentes?
Eu tentei resolver assim:
13/49 x 17/48x 19/47= 4199/110544
Assim eu acho a probabilidade de tirarmos uma bola amarela e depois uma bola rosa e depois uma roxa.
Não consigo achar o menor valor de n.
Espero que dessa vez vocês me ajudem. Pois na anterior não tive resposta.
Obrigado!
Rodrigo
-

Rodrigopc1
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Out 18, 2009 22:18
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: formado
por Molina » Sáb Nov 07, 2009 16:34
Boa tarde, Rodrigo.
Antes de começar estou considerando
um par de bolhinhas de cores diferentes qualquer um dos seguinte casos:
1
amarela e 1
rosa; ou
1
amarela e 1
roxa; ou
1
roxa e 1
rosa.
Vamos pensar nos piores casos para que isso ocorra:
Retirando 13 bolinhas de uma só vez, há possibilidades de que essas 13 sejam
amarelas, o que
não representa
um par de bolhinhas de cores diferentes. Só que a próxima que eu retirar terá que ser de uma cor diferente, logo terei
um par de bolhinhas de cores diferentes.
Fui claro? Agora o que me pegou foi este
um par de bolhinhas de cores diferentes, pois considerei apenas 2 bolinhas (já que fala em
par de bolinhas). Mas também pensei no caso de ter que ser as 3 cores diferentes... E agora?
Minha resposta então é 14. Você tem o gabarito?

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Rodrigopc1 » Qui Nov 12, 2009 19:23
molina escreveu:Boa tarde, Rodrigo.
Antes de começar estou considerando
um par de bolhinhas de cores diferentes qualquer um dos seguinte casos:
1
amarela e 1
rosa; ou
1
amarela e 1
roxa; ou
1
roxa e 1
rosa.
Vamos pensar nos piores casos para que isso ocorra:
Retirando 13 bolinhas de uma só vez, há possibilidades de que essas 13 sejam
amarelas, o que
não representa
um par de bolhinhas de cores diferentes. Só que a próxima que eu retirar terá que ser de uma cor diferente, logo terei
um par de bolhinhas de cores diferentes.
Fui claro? Agora o que me pegou foi este
um par de bolhinhas de cores diferentes, pois considerei apenas 2 bolinhas (já que fala em
par de bolinhas). Mas também pensei no caso de ter que ser as 3 cores diferentes... E agora?
Minha resposta então é 14. Você tem o gabarito?
Oi Molina. Obrigado por responder a pergunta.
Eu ententi o seu raciocínio. E aparti dele comecei a pensar na questão
Eu tenho 49 bolinhas no saco vou pega n bolinhas de uma só vez. Quantas possibilidades tenho de tirar a primeira bolinha ? Eu tenho 3 possibilidades. E de tirar a segunda tenho 3 também e assim até a 13 bolinha. Na 14 bolinha eu vou ter 2 possibilidades e assim até 17 bolinha que eu vou ter a possibilidade de tirar 1 bolinha só e isso vai até a 19 bolinha. Na 20 bolinha que eu vou tirar vai se forma um par diferente de bolinhas.
Então n = 20
Molina vê se meu raciocínio está correto.
Espero sua resposta.
Obrigado: Rodrigo

-

Rodrigopc1
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Out 18, 2009 22:18
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: formado
por Rodrigopc1 » Qui Nov 12, 2009 19:27
Molina a resposta é 20.
-

Rodrigopc1
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Out 18, 2009 22:18
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [probabilidade] Ajudem nessa questão por favor
por amanda s » Sáb Nov 16, 2013 09:53
- 1 Respostas
- 1650 Exibições
- Última mensagem por DanielFerreira

Sex Nov 29, 2013 00:30
Probabilidade
-
- Me ajudem por favor.
por diegodalcol » Qui Mai 22, 2008 13:26
- 4 Respostas
- 5008 Exibições
- Última mensagem por admin

Qui Mai 22, 2008 16:33
Funções
-
- Por favor, ajudem-me!
por hindu » Qua Set 23, 2009 23:08
- 4 Respostas
- 4771 Exibições
- Última mensagem por Lucas Avilez

Ter Out 06, 2009 20:36
Cálculo: Limites, Derivadas e Integrais
-
- M ajudem por favor!!
por Biacbd » Seg Jan 18, 2010 15:39
- 0 Respostas
- 3467 Exibições
- Última mensagem por Biacbd

Seg Jan 18, 2010 15:39
Lógica
-
- Me ajudem por favor!!
por Biacbd » Dom Jan 17, 2010 23:32
- 1 Respostas
- 3777 Exibições
- Última mensagem por CrazzyVi

Ter Jan 19, 2010 16:43
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.