• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função de primeiro grau] Nem sei por onde começar '-'

[Função de primeiro grau] Nem sei por onde começar '-'

Mensagempor Cosma » Qui Abr 11, 2013 20:54

Olá galera! Acabei de me inscrever aqui e necessito de ajuda para resolver algumas funções de primeiro grau. Receio que não tenha visto esse tema com a devida profundidade pois não faço ideia nem por onde começar. O exercício diz o seguinte:

É dado que f(x) > 0, para todo x real, f(1) = 3 e f(u + v) = f(u) . f(v), para quaisquer números reais u e v. Calcule:

a.) f(2)
b.) f(0)
c.) f(1/2)

Eu tentei montar algum tipo de sistema para achar valores de u e v, mas percebi que não é por ai que devo começar, pois fazendo

u + v = 1
u . v = 3

onde, v = 1 - u
e substituindo u . (1 - u) = 3
simplificando e resolvendo, eu chego na equação de segundo grau - u² + u - 3, onde o delta é negativo, não possuindo raízes reais.

Não faço ideia do que fazer, por favor, me ajudem =(
Cosma
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 11, 2013 20:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função de primeiro grau] Nem sei por onde começar '-'

Mensagempor e8group » Qui Abr 11, 2013 21:53

Podemos Tomar u=v= 1 ;assim f(1+1) = f(2) = f(1)f(1) =f^2(1) .

Como f(1) = 3 ,concluímos que f(2) = ... . Qual a resposta ?

E com respeito a f(0) ? Podemos tomar u = 0e v = 1 ;assim , f(0+1) = f(0) f(1) ,logo f(0) = f(0+1)/f(1) = ... e qual seria a resposta ?

E f(1/2) ,como ficaria ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Função de primeiro grau] Nem sei por onde começar '-'

Mensagempor Russman » Qui Abr 11, 2013 23:41

A função que satisfaz essa propriedade

f(u+v) = f(u) . f(v)

é a função exponencial! (:

Veja que se f(x)= e^{kx}, onde k é uma constante real, temos então

f(u+v) = e^{k(u+v)} = e^{ku+kv} = e^{ku} . e^{kv} = f(u) . f(v)

Basta determinar o valor de k usando a informação f(1) = 3.

f(1) = e^{k} = 3

Portanto, k = ln(3) e então podemos determinar a função f(x) = 3^x.

Agora basta substituir os valores de x e voce terá os valores das funções.

Claro que o método do amigo ali de cima é mais geral, mas eu achei que valia a pena ressaltar essa observação.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Função de primeiro grau] Nem sei por onde começar '-'

Mensagempor Cosma » Sáb Abr 13, 2013 12:37

Aah, entendi agora!

Tratando-se de uma função, podemos jogar valores para u e v e disso descobrimos a constante que é a função exponencial igual nosso amigo disse.

Se {f}^{2}(1) e f(1) = 3 a gente conclui que {3}^{1} = 3

logo f(2) = {3}^{2}= 9
e f(0) = {3}^{0} = 1

E o {3}^{\frac{1}{2}} seria, transformando em raiz ficaria \sqrt[2]{3}, correto?
Cosma
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 11, 2013 20:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função de primeiro grau] Nem sei por onde começar '-'

Mensagempor Russman » Sáb Abr 13, 2013 14:50

Sim. As potências fracionárias são raízes.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?