por Cosma » Qui Abr 11, 2013 20:54
Olá galera! Acabei de me inscrever aqui e necessito de ajuda para resolver algumas funções de primeiro grau. Receio que não tenha visto esse tema com a devida profundidade pois não faço ideia nem por onde começar. O exercício diz o seguinte:
É dado que f(x) > 0, para todo x real, f(1) = 3 e f(u + v) = f(u) . f(v), para quaisquer números reais u e v. Calcule:
a.) f(2)
b.) f(0)
c.) f(1/2)
Eu tentei montar algum tipo de sistema para achar valores de u e v, mas percebi que não é por ai que devo começar, pois fazendo
u + v = 1
u . v = 3
onde, v = 1 - u
e substituindo u . (1 - u) = 3
simplificando e resolvendo, eu chego na equação de segundo grau - u² + u - 3, onde o delta é negativo, não possuindo raízes reais.
Não faço ideia do que fazer, por favor, me ajudem =(
-
Cosma
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 11, 2013 20:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qui Abr 11, 2013 21:53
Podemos Tomar

;assim

.
Como

,concluímos que

. Qual a resposta ?
E com respeito a

? Podemos tomar

e

;assim ,

,logo

e qual seria a resposta ?
E

,como ficaria ??
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Qui Abr 11, 2013 23:41
A função que satisfaz essa propriedade

é a função exponencial! (:
Veja que se

, onde

é uma constante real, temos então

Basta determinar o valor de

usando a informação

.

Portanto,

e então podemos determinar a função

.
Agora basta substituir os valores de

e voce terá os valores das funções.
Claro que o método do amigo ali de cima é mais geral, mas eu achei que valia a pena ressaltar essa observação.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Cosma » Sáb Abr 13, 2013 12:37
Aah, entendi agora!
Tratando-se de uma função, podemos jogar valores para u e v e disso descobrimos a constante que é a função exponencial igual nosso amigo disse.
Se

e

a gente conclui que
logo

e

E o

seria, transformando em raiz ficaria
![\sqrt[2]{3} \sqrt[2]{3}](/latexrender/pictures/77529b271d4ed2ab8ca1f0755594aa28.png)
, correto?
-
Cosma
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Abr 11, 2013 20:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Sáb Abr 13, 2013 14:50
Sim. As potências fracionárias são raízes.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não sei nem por onde começar
por Daniel Bertuol » Ter Set 06, 2011 14:03
- 1 Respostas
- 1470 Exibições
- Última mensagem por Neperiano

Ter Set 06, 2011 14:47
Matemática Financeira
-
- Não sei nem por onde começar essa.....
por cidaiesbik » Seg Mai 04, 2009 12:51
- 2 Respostas
- 2565 Exibições
- Última mensagem por cidaiesbik

Seg Mai 04, 2009 18:22
Desafios Difíceis
-
- Dúvida não sei por onde começar...
por csmoreira » Seg Mar 04, 2013 20:46
- 0 Respostas
- 2264 Exibições
- Última mensagem por csmoreira

Seg Mar 04, 2013 20:46
Álgebra Linear
-
- função do segundo grau, urgente não sei como começar
por eri » Sex Mar 15, 2013 23:31
- 1 Respostas
- 3638 Exibições
- Última mensagem por XILVANA

Qua Abr 10, 2013 13:20
Funções
-
- Não sei por onde começar, mais quero entender (Vetores)
por Linda Arantes » Sex Set 10, 2010 14:52
- 1 Respostas
- 3040 Exibições
- Última mensagem por MarceloFantini

Sex Set 10, 2010 17:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.