• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - Assintotas

Limite - Assintotas

Mensagempor Viviani » Qui Jan 10, 2013 13:19

A questão é o seguinte:
Encontre as restas assintotas verticais e horizontais e faça um esboço do grafico da função : f(x)=\frac{{x}^{2}-5x}{{x}^{2}-7x+10}.
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limite - Assintotas

Mensagempor e8group » Qui Jan 10, 2013 18:22

Perceba que esta função estar definida \iff o denominador não se anula . Se r_1  , r_2 são pontos que zera x^2 - 7x + 10 .Então , x^2 - 7x + 10  = (x-r_1)(x-r_2) .Um destes pontos já sabemos r_1 = 5 (fácil ver ! ) .Deste modo basta achar r_2 .Perceba que f não estar definida por estes pontos , mas podemos estudar o comportamento de f com pontos de seu domínio em uma vizinhança de r_1 e r_2 .

Além disso , reescrevendo f como \frac{x(x -5) }{(x-5)(x-r_2)} . obteremos f(x) = \frac{x}{x-r_2} . Perceba que só fizemos a simplificação , porque D_f = \mathbb{R} -\{r_1 = 5 ,r_2\} Ou seja x \neq 5 .

Tente concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - Assintotas

Mensagempor Viviani » Ter Jan 15, 2013 16:12

Obrigadaa Santhiago ;)
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.