• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raciocínio

Raciocínio

Mensagempor tigerwong » Qua Jan 09, 2013 16:48

Um comerciante comprou de um agricultor um lote de 15 sacas de arroz, cada qual com 60 kg, e, por pagar à vista, obteve um desconto de 20% sobre o preço de oferta. Se, com a venda de todo o arroz desse lote ao preço de R$ 8,50 o quilograma, ele obteve um lucro de 20% sobre a quantia paga ao agricultor, então o preço de oferta era:

a) R$ 6 375,00.
b) R$ 7 650,25.
c) R$ 7 968,75.
d) R$ 8 450,50.
e) R$ 8 675,00.
tigerwong
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jun 24, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Raciocínio

Mensagempor Cleyson007 » Qui Jan 10, 2013 16:49

Sabendo o preço final:

15 sacas x 60 kg x 8,50 kg = R$ 7.650,00

Como foi vendido com um lucro de 20% (100 + 20 = 120%), temos:

7.650,00 ------ 120
x ----------------- 100

Resolvndo, x = R$ 6.375,00 (valor que ele pagou).

Porém, se ganhou ainda 20% de desconto (100 - 20 = 80% efetivamente pago), temos:

6.375 ----------- 80
x ----------------- 100

Resolvendo, x = R$ 7.968,75

Comente qualquer dúvida :y:

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Raciocínio

Mensagempor tigerwong » Qui Jan 10, 2013 19:24

Dos fóruns que fiz essa pergunta essa foi a única que consegui entender. Muito obrigado, cara
tigerwong
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jun 24, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Raciocínio

Mensagempor DanielFerreira » Qui Jan 10, 2013 22:52

De fato, o Cleyson explica muito BEM as resoluções que apresenta!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Raciocínio

Mensagempor Cleyson007 » Sex Jan 11, 2013 09:05

Bom dia a todos!

Que bom que lhe ajudei Tigerwong.

Meu amigo Daniel, muito obrigado pelas palavras :y:

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59