por SILMARAKNETSCH » Qua Nov 14, 2012 18:08
-
SILMARAKNETSCH
- Usuário Dedicado
-
- Mensagens: 45
- Registrado em: Seg Out 29, 2012 14:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração EAD prouni deficiente físi
- Andamento: cursando
por SILMARAKNETSCH » Qua Nov 14, 2012 22:05
SILMARAKNETSCH escreveu:
raiz os amigos ja me ensinaram mas a parte de frações junto complicou.
-
SILMARAKNETSCH
- Usuário Dedicado
-
- Mensagens: 45
- Registrado em: Seg Out 29, 2012 14:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração EAD prouni deficiente físi
- Andamento: cursando
por MarceloFantini » Qua Nov 14, 2012 22:29
Acredito que a função seja
.
Vamos reescrevê-la da seguinte forma:
.
Derivando, vamos usar alguns fatos:
Primeiro, a derivada de
, para qualquer
real, é
.
Segundo, a derivada de uma constante é zero.
Aplicando isto, segue que
.
Se encontrar alguma dificuldade, refaça as contas no papel, ajuda bastante.
Editado pela última vez por
MarceloFantini em Qui Nov 15, 2012 08:25, em um total de 1 vez.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador
-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por SILMARAKNETSCH » Qui Nov 15, 2012 08:07
sIM É O QUE TENHO FEITO REFAÇO NO PAPEL ESTOU COM MIL FOLHAS AQUI ESTOU A UM MÊS JA RABISCANDO EXERCÍCIOS AGORA SEMANA QUE VEM É A PROVA CONSEGUI NA FACULDADE UMA AULA PRESENCIAL ANTES DA PROVA TB PARA TODA NOSSA TURMA AQUI FINDA MINHA MATÉRIA DESSE BIMESTRE MAS COMO QUERO PASSAR NO CONCURSO DO TRE ESTAREI AQUI CONTINUAMENTE AGRADEÇO A AJUDA SEM ELA NÃO CHEGARIA A LUGAR ALGUM ENSINO A DISTÂNCIA TEM QUE TER MUITA GARRA E CORRER ATRÁS SENÃO É IMPOSSÍVEL APRENDER MATEMÁTICA SÓ O PROFESSOR É INDISPENSÁVEL OBRIGADO PROFESSOR.
-
SILMARAKNETSCH
- Usuário Dedicado
-
- Mensagens: 45
- Registrado em: Seg Out 29, 2012 14:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração EAD prouni deficiente físi
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Logaritmo com raiz e frações
por _Liilo » Ter Nov 02, 2010 16:11
- 5 Respostas
- 26812 Exibições
- Última mensagem por _Liilo
Ter Nov 02, 2010 19:39
Logaritmos
-
- [Frações Algébricas] Como simplifico essa fração?
por Kah » Qua Mar 18, 2015 17:44
- 1 Respostas
- 1955 Exibições
- Última mensagem por Russman
Qua Mar 18, 2015 22:38
Álgebra Elementar
-
- proporção mistura de substância
por hevhoram » Qui Jun 23, 2011 14:15
- 1 Respostas
- 4373 Exibições
- Última mensagem por FilipeCaceres
Qui Jun 23, 2011 15:30
Álgebra Elementar
-
- Ajuda com essa função
por andreagenor » Qui Nov 11, 2010 03:11
- 6 Respostas
- 3938 Exibições
- Última mensagem por rogeriomoreira
Sáb Nov 20, 2010 17:56
Funções
-
- Ajuda com essa função
por andre2908 » Ter Jul 15, 2014 02:15
- 2 Respostas
- 1690 Exibições
- Última mensagem por andre2908
Ter Jul 22, 2014 13:29
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.