por mih123 » Qua Ago 29, 2012 17:14
Aqui está um exercício que os limites laterais são diferentes.
![\lim_{x\to3}\frac{{x}^{2}+\sqrt[3]{x-3}-9}{\sqrt[3]{9-x\sqrt[2]{4x-3}}} \lim_{x\to3}\frac{{x}^{2}+\sqrt[3]{x-3}-9}{\sqrt[3]{9-x\sqrt[2]{4x-3}}}](/latexrender/pictures/e78dbfc2bdcb125b7026c207e7f66e01.png)
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qui Ago 30, 2012 20:33
Boa noite . Sim os limites laterais diferem .Mas, vc conseguiu calcular-los ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por mih123 » Qui Ago 30, 2012 23:35
Não consegui!! Eu queria que alguém me ajudasse.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Sex Ago 31, 2012 12:21
Bom dia . Acredito que a forma mais simples de calcular os limites sejam por L'hospital . Talvez se a indeterminação prosseguir ,terá que aplicar este teorema mais de uma vez.
OBS.: No denominador tome cuidado com a derivada . Lembre-se da regra da cadeia . Uma forma mais simples é transformar o denominador em uma composição de funções e aplicar a lei .

.
Se você não conseguir ,post aqui suas dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- O limite existe?
por Cleyson007 » Sáb Abr 28, 2012 17:00
- 1 Respostas
- 1556 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- Existe ou não o limite?
por Cleyson007 » Sáb Abr 28, 2012 17:28
- 2 Respostas
- 2000 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 14:14
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe ou não?
por Cleyson007 » Sáb Abr 28, 2012 17:30
- 3 Respostas
- 2164 Exibições
- Última mensagem por Guill

Dom Abr 29, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- Prova de que o limite não existe.
por arthur_ » Sáb Ago 22, 2009 21:29
- 2 Respostas
- 6377 Exibições
- Última mensagem por arthur_

Dom Ago 23, 2009 15:12
Cálculo: Limites, Derivadas e Integrais
-
- Prove que o limite existe
por Cleyson007 » Sáb Abr 28, 2012 16:48
- 2 Respostas
- 1478 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 15:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.