• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limites laterais..!

[LIMITE] Limites laterais..!

Mensagempor mih123 » Ter Ago 28, 2012 15:40

Boa tarde! Estou com dúvida em quando vai existir limite ou não limite. Quando os limites laterais são diferentes não tem limite.
Dessa forma, para saber se vai existir o limite eu vou ter que fazer duas vezes???

Nesse caso aqui:
\lim_{x\to-3}\frac{\sqrt[2]{\sqrt[3]{-9x}+1}-2}{2-\sqrt[3]{x+11}}

No Wolfram, mostra que não existe.Então,sempre vou ter que fazer de dois jeitos??
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor MarceloFantini » Ter Ago 28, 2012 16:19

Sim, só que você terá que calcular com a variável tendendo pela direita e depois pela esquerda. Em notação, x \to -3^+ e x \to -3^-.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE] Limites laterais..!

Mensagempor Claudin » Ter Ago 28, 2012 16:21

mih123 escreveu:Boa tarde! Estou com dúvida em quando vai existir limite ou não limite. Quando os limites laterais são diferentes não tem limite.
Dessa forma, para saber se vai existir o limite eu vou ter que fazer duas vezes???


Sim.

mih123 escreveu:Nesse caso aqui:
\lim_{x\to-3}\frac{\sqrt[2]{\sqrt[3]{-9x}+1}-2}{2-\sqrt[3]{x+11}}

No Wolfram, mostra que não existe.Então,sempre vou ter que fazer de dois jeitos??


Nesse caso você terá de resolver os seguintes limites:


\lim_{x\to-3^{-}}\frac{\sqrt[2]{\sqrt[3]{-9x}+1}-2}{2-\sqrt[3]{x+11}}

e


\lim_{x\to-3^{+}}\frac{\sqrt[2]{\sqrt[3]{-9x}+1}-2}{2-\sqrt[3]{x+11}}


Caso o resultado for igual, é sinal que o limite existe, caso o resultado for diferente, você prova que não existe limite.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor LuizAquino » Qua Ago 29, 2012 07:50

mih123 escreveu:Boa tarde! Estou com dúvida em quando vai existir limite ou não limite. Quando os limites laterais são diferentes não tem limite.
Dessa forma, para saber se vai existir o limite eu vou ter que fazer duas vezes???


Se você desejar assistir uma videoaula sobre Limites Laterais, eu gostaria de recomendar a videoaula "03. Cálculo I - Limites Laterais". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] Limites laterais..!

Mensagempor mih123 » Qua Ago 29, 2012 15:55

Olá gente, LuizAquino eu assisti sua aula. Eu continuo com dúvidas,porque todos os exercícios de vários livros que eu olhei nos limites laterais, há duas funções uma para os menores outra para os maiores. E no caso aqui só tem uma função.

Desculpa gente, exemplo de limite que eu coloquei anteriormente existe sim.É porque na hora de colocar aqui eu me confundi.O que não existe é esse aqui:

\lim_{x\to3}\frac{{x}^{2}+\sqrt[3]{x-3}-9}{\sqrt[3]{9-x\sqrt[2]{4x-3}}}
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor Claudin » Qua Ago 29, 2012 16:21

mih123 escreveu:Olá gente, LuizAquino eu assisti sua aula. Eu continuo com dúvidas,porque todos os exercícios de vários livros que eu olhei nos limites laterais, há duas funções uma para os menores outra para os maiores. E no caso aqui só tem uma função.



Sim, deixe em qual ponto é realmente a sua dúvida, seja na resolução ou no entendimento do conceito de limites laterais, tendo em vista que as aulas não foram uma boa ajuda para sanar sua dúvida, se precisar de alguma resolução ou algo similar, poste aqui.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor mih123 » Qua Ago 29, 2012 16:27

O conceito eu entendi. O problema é que eu tenho uma lista de exercícios pra fazer.Daí, me aparece exercícios que os limites não existem.
Então, eu não sei o que fazer pra descobrir se existe ou não.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor Claudin » Qua Ago 29, 2012 16:55

Basta fazê-los pela esquerda e pela direita, se der igual o limite existe, se for diferente o limite não existe, basicamente é isso.
Se quiser postar exercícios que você tem dúvida pode postar também.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limites laterais..!

Mensagempor MarceloFantini » Qua Ago 29, 2012 16:59

Se for postar, por favor poste em novos tópicos, para manter a organização do fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.