• Anúncio Global
    Respostas
    Exibições
    Última mensagem

OSCM - Números naturais

OSCM - Números naturais

Mensagempor anfran1 » Dom Ago 19, 2012 15:28

Fiz hoje a prova e tinha um exercício que eu não consegui resolver. Se alguém souber por favor me explique.
Prove que {1}^{3}+{2}^{3}+...+{n}^{3}={(1+2+...+n)}^{2} para qualquer número natural.
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor MarceloFantini » Dom Ago 19, 2012 17:31

Você já aprendeu sobre o Princípio da Indução Finita? Isto resolve a questão. Se souber, é simples, se não veja e conseguirá resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: OSCM - Números naturais

Mensagempor anfran1 » Dom Ago 19, 2012 17:39

Sim eu tenho que colocar o K+1 e ver se é verdadeira.
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor anfran1 » Seg Ago 20, 2012 20:24

O que eu faço depois de:{1}^{3}+{2}^{3}+...+{k}^{3}+{(k+1)}^{3}={(1+2+...+k)}^{2}+{(k+1)}^{3}?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor MarceloFantini » Seg Ago 20, 2012 21:01

Você tem que expandir (1+ \cdots + k)^2 + (k+1)^3 e chegar em (1+ \cdots + k + (k+1))^2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: OSCM - Números naturais

Mensagempor anfran1 » Ter Ago 21, 2012 13:38

MarceloFantini escreveu:Você tem que expandir (1+ \cdots + k)^2 + (k+1)^3 e chegar em (1+ \cdots + k + (k+1))^2.

Isso eu sei mas não consigo chegar na equação.
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor anfran1 » Dom Ago 26, 2012 10:17

Por favor eu já expandi mas não consigo chegar em {(1+...+k+(k+1))}^{2}. O que está me complicando é essa parte das reticências. Alguém poderia me ajudar?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor anfran1 » Qui Ago 30, 2012 20:45

Essa questão já está me incomodando um pouco. Como faço para expandir {(1+2+...+k)}^{2}+{(k+1)}^{3} para chegar em {(1+2+...+k+(k+1))}^{2}?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: OSCM - Números naturais

Mensagempor fraol » Qui Ago 30, 2012 22:10

Boa noite,

Sabendo que 1 + 2 + 3 + ... + k = k(k+1)/2 ( a soma dos k termos de uma PA com a_1 = 1 e razão 1 ),

Tem-se então que (1 + 2 + 3 + ... + k)^2 + (k+1)^3 = (k(k+1)/2)^2 + (k+1)^3

Agora vamos desenvolver:

(k(k+1)/2)^2 + (k+1)^3 = \frac{k^2(k+1)^2 + 4(k+1)^3}{4}

= \frac{(k+1)^2(k^2 + 4(k +1))}{4}

= \frac{(k+1)^2(k^2 + 4k + 4))}{4}

= \frac{(k+1)^2(k + 2)^2}{4}

= \left[ \frac{(k+1)(k + 2)}{2}\right]^2

(que é o quadrado da soma dos (k+1) termos de uma uma PA com a_1 = 1 e razão 1 )

= (1 + 2 + 3 + ... + k + (k + 1))^2

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: OSCM - Números naturais

Mensagempor anfran1 » Sex Ago 31, 2012 17:13

Nossa não pensei nessa PA. Muito obrigado.
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?