por anfran1 » Dom Ago 19, 2012 15:28
Fiz hoje a prova e tinha um exercício que eu não consegui resolver. Se alguém souber por favor me explique.
Prove que

para qualquer número natural.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Dom Ago 19, 2012 17:31
Você já aprendeu sobre o
Princípio da Indução Finita? Isto resolve a questão. Se souber, é simples, se não veja e conseguirá resolver.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por anfran1 » Dom Ago 19, 2012 17:39
Sim eu tenho que colocar o K+1 e ver se é verdadeira.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por anfran1 » Seg Ago 20, 2012 20:24
O que eu faço depois de:

?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Ago 20, 2012 21:01
Você tem que expandir

e chegar em

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por anfran1 » Ter Ago 21, 2012 13:38
MarceloFantini escreveu:Você tem que expandir

e chegar em

.
Isso eu sei mas não consigo chegar na equação.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por anfran1 » Dom Ago 26, 2012 10:17
Por favor eu já expandi mas não consigo chegar em

. O que está me complicando é essa parte das reticências. Alguém poderia me ajudar?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por anfran1 » Qui Ago 30, 2012 20:45
Essa questão já está me incomodando um pouco. Como faço para expandir

para chegar em

?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Qui Ago 30, 2012 22:10
Boa noite,
Sabendo que

( a soma dos k termos de uma PA com

e razão

),
Tem-se então que

Agora vamos desenvolver:

=

=

=

=
![\left[ \frac{(k+1)(k + 2)}{2}\right]^2 \left[ \frac{(k+1)(k + 2)}{2}\right]^2](/latexrender/pictures/dc55c83130659bab8d16eb68d2111073.png)
(que é o quadrado da soma dos

termos de uma uma PA com

e razão

)
=
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por anfran1 » Sex Ago 31, 2012 17:13
Nossa não pensei nessa PA. Muito obrigado.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- números naturais
por jose henrique » Dom Ago 15, 2010 15:24
- 2 Respostas
- 1606 Exibições
- Última mensagem por jose henrique

Seg Ago 16, 2010 10:40
Álgebra Elementar
-
- números naturais
por jose henrique » Seg Ago 16, 2010 11:44
- 0 Respostas
- 1114 Exibições
- Última mensagem por jose henrique

Seg Ago 16, 2010 11:44
Álgebra Elementar
-
- números naturais
por jose henrique » Seg Ago 16, 2010 12:31
- 1 Respostas
- 1550 Exibições
- Última mensagem por MarceloFantini

Ter Ago 17, 2010 00:06
Álgebra Elementar
-
- números naturais
por jose henrique » Ter Ago 24, 2010 23:49
- 3 Respostas
- 2064 Exibições
- Última mensagem por MarceloFantini

Qua Ago 25, 2010 13:13
Álgebra Elementar
-
- Conjunto dos números naturais
por adriano rodrigues » Dom Dez 12, 2010 18:24
- 3 Respostas
- 3037 Exibições
- Última mensagem por adriano rodrigues

Ter Dez 14, 2010 19:44
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.