• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[função] PUC

[função] PUC

Mensagempor JKS » Sáb Ago 25, 2012 04:23

Preciso de ajudaaa.. não consegui, já fiz tudo, elevei ao quadrado mas não consigo achar a resposta correta..

(PUC) A equação x-\sqrt[]{x}=4

Resposta = Possui uma solução real, a qual é menor que 7
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [função] PUC

Mensagempor MarceloFantini » Sáb Ago 25, 2012 10:33

Note que x = 4 + \sqrt{x}. Elevando os dois lados ao quadrado temos x^2 = 16 +4 \sqrt{x] + x, daí x^2 -x -16 = 4 \sqrt{x}. Elevando novamente, x^4 -2x^3 -31x^2 +32x +256 = 16x^2. Agora continue, sabendo que x \geq 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [função] PUC

Mensagempor e8group » Sáb Ago 25, 2012 12:38

Bom dia . um outro modo de elevar ao quadrado ,encontra-se abaixo :

x = 4 + \sqrt{x}  \implies   x + (-4)  =  (4 + \sqrt{x}  ) + (-4) \implies x- 4 = \sqrt{x} . De onde ,


(x-4)^2  = |x| .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [função] PUC

Mensagempor MarceloFantini » Sáb Ago 25, 2012 12:43

O Santhiago tem razão, é uma maneira mais rápida (e provável a esperada); porém não é necessário o módulo, uma vez que x \geq 0 para a existência da raíz quadrada. Logo, x^2 -8x +16 = x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.