• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Ter Jul 17, 2012 03:19

Determine e identifique o lugar geométrico dos pontos equidistantes da reta y-7=0 e do ponto (3,2) e determine o vértice e a equação do eixo.

Não sei como iniciar a questão.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 03:51

A distância de um ponto qualquer ao ponto P(3,2) será d_1^2 = (x-3)^2 +(y-2)^2. A distância de um ponto qualquer à reta y-7=0 será d_2 = y-7. Fazendo d_1 = d_2 segue

(x-3)^2 +(y-2)^2 = (y-7)^2 \implies x^2 -6x+9 +y^2 -4y+4=y^2 -14y +49
\implies x^2 -6x +9+4-49 = -14y+4y \implies x^2 -6x-30 = -10y
\implies y = \frac{-x^2 +6x +30}{10}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 16:11

MarceloFantini escreveu:A distância de um ponto qualquer ao ponto P(3,2) será d_1^2 = (x-3)^2 +(y-2)^2. A distância de um ponto qualquer à reta y-7=0 será d_2 = y-7. Fazendo d_1 = d_2 segue

(x-3)^2 +(y-2)^2 = (y-7)^2 \implies x^2 -6x+9 +y^2 -4y+4=y^2 -14y +49
\implies x^2 -6x +9+4-49 = -14y+4y \implies x^2 -6x-30 = -10y
\implies y = \frac{-x^2 +6x +30}{10}.


Obrigado pela resposta.
Porém você errou nesse momento
9+4-49 = 30
o certo seria 9+4-49= 36
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor MarceloFantini » Ter Jul 17, 2012 16:14

Então a equação será y = \frac{-x^2 +6x +36}{10}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Plano

Mensagempor Claudin » Ter Jul 17, 2012 18:22

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.