por e8group » Dom Jun 17, 2012 14:37
Limites no "infinito " prova a existência de pelo menos uma raiz real ?
Considerando uma função polinomial (continua para todos reais) f definida por

, de forma que

,

converge para

e

. Isto prova a existência de pelo menos uma raiz real ? se não ,qual seria o método ?
Obrigado !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Ter Jun 19, 2012 01:34
Evite dizer que

converge para mais ou menos infinito, diga que tende a mais ou menos infinito. Como polinômios são funções contínuas, pelo teorema do valor intermediário existe algum ponto onde ele se anula. É isso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Ter Jun 19, 2012 11:20
MarceloFantini escreveu:Evite dizer que converge para mais ou menos infinito, diga que tende a mais ou menos infinito. Como polinômios são funções contínuas, pelo teorema do valor intermediário existe algum ponto onde ele se anula. É isso.
OK ! Agradeço pela atenção . Fazendo uma analogia entre as assíntotas verticais e horizontais , O que significa

e

? Pergunto isso porque não vi ainda uma explicação para este comportamento ?
OBS .: Eu tenho um exercício de uma lista de limites que pede para mostra que todo polinômio de maior grau impar tem pelo menos uma raiz real (dica : ver limites no infinito ). Peço desculpas pelo erro da notação .abraços .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES] Limite de Raiz "m" de "infinito"
por antonelli2006 » Sáb Set 17, 2011 05:56
- 5 Respostas
- 9194 Exibições
- Última mensagem por LuizAquino

Dom Set 18, 2011 10:08
Cálculo: Limites, Derivadas e Integrais
-
- Limites, quando podem resultar em "Infinito"?
por rafa_0910 » Dom Nov 02, 2014 14:17
- 3 Respostas
- 2814 Exibições
- Última mensagem por Russman

Seg Nov 03, 2014 02:23
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida Limite no infinito "m<n"
por elyjunior » Seg Set 26, 2011 22:59
- 2 Respostas
- 1829 Exibições
- Última mensagem por LuizAquino

Ter Set 27, 2011 17:09
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Problema na "prova" das regras operatórias
por Subject Delta » Qua Abr 25, 2012 17:37
- 2 Respostas
- 2836 Exibições
- Última mensagem por Subject Delta

Qua Abr 25, 2012 21:23
Cálculo: Limites, Derivadas e Integrais
-
- Sistemas Lineares: "a, b e c" como "soluções".
por allendy » Qua Set 08, 2010 20:28
- 2 Respostas
- 11305 Exibições
- Última mensagem por allendy

Qua Set 08, 2010 20:37
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.