por joaofonseca » Qua Mar 21, 2012 13:28
Seja um dado não equilibrado, com as faces numeradas de 1 a 6.Sabe-se que todos os números pares tem a mesma probabilidade da sair e que todos os numeros impares também têm a mesma probabilidade de sair.Sabe-se ainda que a probabilidade de sair número primo é de 0,4.
Qual é a probabilidade de sair 1?
Sejam dois acontecimentos:
A-"sair número impar"
B-"sair número primo"
Neste problema não se pode utilizar a regra de Laplace, pois os acontecimentos elementares não são equiprováveis.Contudo, no espaço amostral desta experiência, sair número primo implica sair número impar e vice-versa.Logo deduzi que a P(A) também é igual a 0,4.
É dito que os números impares tem a mesma probabilidade de sair.Ou seja o 1, o 3 e 5.
Logo cada um dos números impares tem
de 0,4 de probabilidade de sair.
Contudo a solução do livro é
.Quem está errado?
Obrigado pela ajuda
-
joaofonseca
- Colaborador Voluntário
-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por joaofonseca » Sex Mar 23, 2012 18:19
Após alguma pesquisa na net.Encontrei uma solução para o problema.
Primeiro o erro do meu racíocino anterior:
O nº 1 não é número primo, mas o 2 é.Logo existem 3 números pares (dos quais um deles é primo) e 3 números impares(dos quais 2 são primos).
Pela axiomática sabemos que a
. em que
representa o universo e
os vários acontecimentos que compõem o universo.
Existem 3 acontecimentos que têm a mesma probabilidade(nºs impares) e outros 3 acontecimentos também com a mesma probabilidade(nºs pares).Assim:
, em que
a é a probabilidade de ser par e
b a probabilidade de ser impar.
Sabemos que a probabilidade de ser nº primo é de 0,4.Logo:
Agora basta montar um sistema, resolve-lo e achar o valor de
b para saber a probabilidade de sair o 1 (impar).
-
joaofonseca
- Colaborador Voluntário
-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificil questao de probabilidade
por bmachado » Seg Jun 11, 2012 16:29
- 2 Respostas
- 3356 Exibições
- Última mensagem por bmachado
Qua Jun 13, 2012 22:03
Probabilidade
-
- que dificil
por giboia90 » Seg Abr 08, 2013 03:34
- 1 Respostas
- 1341 Exibições
- Última mensagem por anabatista
Ter Abr 09, 2013 01:37
Estatística
-
- Primitiva difícil
por photon » Sáb Set 19, 2009 18:39
- 0 Respostas
- 1344 Exibições
- Última mensagem por photon
Sáb Set 19, 2009 18:39
Cálculo: Limites, Derivadas e Integrais
-
- questão dificil.
por natanskt » Seg Dez 13, 2010 18:20
- 1 Respostas
- 2252 Exibições
- Última mensagem por Molina
Sáb Dez 25, 2010 20:28
Binômio de Newton
-
- Viagem difícil
por Mechanic » Sex Mar 18, 2011 21:00
- 4 Respostas
- 2549 Exibições
- Última mensagem por MarceloFantini
Qua Mar 23, 2011 00:30
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.