• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matemática Financeira com log

Matemática Financeira com log

Mensagempor Rosana Vieira » Ter Mar 20, 2012 20:24

Dona Berenice quer aplicar R$ 80.000,00. Conseguiu encontrar um banco onde a taxa de juros da aplicação é de 0,91% a.m.. Use log2 = 0,3010 e log 1,0091 = 0,0039 .
a) Por quanto tempo o dinheiro deve ficar aplicado para que ela obtenha o dobro deste capital?
b) Se ela aplicasse outro valor, o período de tempo para ela conseguir o dobro do capital, seria alterado?
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Matemática Financeira com log

Mensagempor nakagumahissao » Seg Abr 30, 2012 22:24

M = 80.000,00{\left(1 + \frac{0,91}{100} \right)}^{t}

QUESTÃO A - Para que o montente dobre de valor (R$ 160.000,00):

160.000,00 = 80.000,00{\left(1 + \frac{0,91}{100} \right)}^{t} \Rightarrow 2 = {1,0091}^{t} \Rightarrow

Usando logaritmos, temos que:

\Rightarrow log{(1,0091)}^{t} = log 2 \Rightarrow t \cdot log(1,0091) = log 2 \Rightarrow

\Rightarrow t = \frac{log (2)}{log(1,0091)}

Agora, utilizando os dados fornecidos no enunciado, ou seja: log2 = 0,3010 e log 1,0091 = 0,0039, teremos então:

\Rightarrow t = \frac{0,3010}{0,0039} \Rightarrow t \approx 77,18

Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.



QUESTÃO B

Vejamos. Para dobrar-se qualquer valor v, teríamos:

M = v{1,0091}^{t}\Rightarrow2v = v{1,0091}^{t}\Rightarrow2 = {1,0091}^{t}\Rightarrow

\Rightarrow t = \frac{log(2)}{log (1,0091)} \approx 77,18

Desta forma, podemos afirmar que para quaisquer valores, para que se dobre, o tempo necessário para que isto aconteça é o mesmo sempre para esta taxa.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Matemática Financeira com log

Mensagempor Fabiano Vieira » Seg Abr 30, 2012 23:24

t=\frac{0,3010}{0,0039}=77,18

Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.[/quote]

Qual o cálculo que você fez para achar os 6 anos, 5 meses e 5 dias, a partir do valor 77,18.
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: Matemática Financeira com log

Mensagempor nakagumahissao » Ter Mai 01, 2012 01:16

Sendo t em Meses, o valor de t = 77,18 meses, ou seja:

Para sabermos quantos anos possuem 77,18 meses, dividimos por 12 meses, que representa um ano. Assim:

77,18 / 12 = 6,43166666, ou seja, 6 Anos. Retirando-se o 6 do número 6,4316666..., teremos:

6,431666... - 6 = 0,43166666 Anos (Menos de 1 ano)

Para sabermos quantos meses este valor representa, multiplicamos este resultado por 12 (1 ano possui 12 Meses). Desta forma:

0,4316666 x 12 = 5,1799992, ou seja, 5 Meses. Subtraindo-se 5 de 5,1799992, teremos:

5,1799992 - 5 = 0,1799992 Meses. De forma análoga, desta vez, para se saber a quantidade de dias em 0,1799992 meses, multiplicamos por 30 (média de dias em 1 mês), que finalmente, nos dará:

0,1799992 Meses x 30 = 5,399976 dias, o que equivale a aproximadamente 5 dias. O restante, 0,399976 foi ignorado.

Concluindo: 6 anos, 5 meses e 5 dias aproximadamente.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Matemática Financeira com log

Mensagempor Fabiano Vieira » Ter Mai 01, 2012 18:05

Entendi! Muito obrigado, nakimahissao.
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: Matemática Financeira com log

Mensagempor Fabiano Vieira » Qui Mai 03, 2012 10:26

Fabiano Vieira escreveu:t=\frac{0,3010}{0,0039}=77,18

Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.


Qual o cálculo que você fez para achar aos 6 anos, 5 meses e 5 dias, a partir do valor 77,18.[/quote]
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}