• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade em Álgebra

Dificuldade em Álgebra

Mensagempor Cleyson007 » Qua Mar 07, 2012 17:27

Boa tarde amigos do Ajuda Matemática!

Nossa, estou com muita dificuldade em minhas aulas de Álgebra... Como resolver exercícios do tipo que seguem?

1°) Verifique que: 1+i\,\,{\leq}_{L}\,\,2+i

2°) Verifique que: 2\,\,{\leq}_{L}\,\,3

Alguém pode me ajudar?

Fico no aguardo.
Editado pela última vez por Cleyson007 em Qua Mar 07, 2012 20:51, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor MarceloFantini » Qua Mar 07, 2012 18:54

Cleyson, você poderia por favor colocar o enunciado completo? O que é \leq_L? O que é i? A segunda linha é uma conclusão da primeira? Está confuso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor Cleyson007 » Qua Mar 07, 2012 20:50

Boa noite Marcelo!

O enunciado está completo!

O {\leq}_{L} significa o estudo lexicográfico no conjunto dos complexos; o i é a parte imaginária.

Cada linha é um exercício (editei para ficilitar a compreensão).
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor MarceloFantini » Qua Mar 07, 2012 21:05

Pelo enunciado, estou supondo que a ordem definida seja (a,b) \leq_L (c,b) se a \leq c. Desta forma parece tranquilo, não? No segundo caso, teremos (2,0) \leq_L (3,0), logo 2 \leq_L 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: