• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Qui Fev 09, 2012 18:59

3. (a) Calcule o determinante da matriz: A =
1 2 2 3
1 0 ?2 0
3 ?1 1 ?2
4 ?3 0 2
(b) O sistema AX = 0 tem solu¸c˜ao n˜ao trivial? ¯ Justi?que.

Como resolver, e o que fazer para resolver?

Não compreendi a questão
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Qui Fev 09, 2012 20:13

Você sabe calcular o determinante de uma matriz genérica n \times n? Se sim, basta ver se o determinante é nulo ou não. No primeiro caso, isto significaria que AX=0 tem soluções não triviais, enquanto que no segundo a única solução é a trivial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Seg Fev 13, 2012 15:32

Gostaria de saber se o http://www.wolframalpha.com/

Cacula também determinante de uma matriz.

Por exemplo nesse exercício eu obtive -131 (Corrigi com ajuda do colega Marcelo Fantini) :y:

Queria saber se o resultado realmente é esse?
Editado pela última vez por Claudin em Seg Fev 13, 2012 16:45, em um total de 2 vezes.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Seg Fev 13, 2012 16:15

Procurei aqui e parece que o código para matriz é {{1,2,2,3},{1,0,-2,0},{3,-1,1,-2},{4,-3,0,2}}. Ele retorna a matriz e calcula o determinante também, e a resposta foi -131. Em todo caso, é diferente de zero e portanto a única solução é a trivial.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor LuizAquino » Seg Fev 13, 2012 16:17

Claudin escreveu:Gostaria de saber se o http://www.wolframalpha.com/

Cacula também determinante de uma matriz.

Por exemplo nesse exercício eu obtive -89

Queria saber se o resultado realmente é esse?


Sim, é possível calcular determinantes. Veja como acessando a página de exemplos:

Wolfram|Alpha Examples - Matrices & Linear Algebra
http://www.wolframalpha.com/examples/Matrices.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor Claudin » Seg Fev 13, 2012 16:48

MarceloFantini escreveu:Procurei aqui e parece que o código para matriz é {{1,2,2,3},{1,0,-2,0},{3,-1,1,-2},{4,-3,0,2}}. Ele retorna a matriz e calcula o determinante também, e a resposta foi -131. Em todo caso, é diferente de zero e portanto a única solução é a trivial.



Não compreendi a explicação da pergunta da letra 'B' ?

Gostaria de saber também se a análise sobre as soluções do sistema linear tem haver com o resultado do determinante, como por exemplo, determinante for maior, menor ou igual a zero, se isso influencia na resposta da letra 'b'?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Seg Fev 13, 2012 16:55

O determinante tem relação com a solução de um sistema sim. Se ele for diferente de zero, isso significa que ele possui solução única. No caso de um sistema homogêneo, já sabemos que o vetor nulo é solução, portanto e o determinante for diferente de zero isto nos assegura que esta é realmente a única solução.

Quando o determinante é zero, isto significa que pode existir mais de uma solução ou não existirem soluções. Novamente, como é homogêneio, sabemos que tem solução, e portanto isto significa que existe mais de uma solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Seg Fev 13, 2012 17:41

Se o determinante for diferente de zero, ele possui solução única.

E se for igual a zero, quais as soluções que ele possui?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor MarceloFantini » Seg Fev 13, 2012 17:47

Como eu disse, ele pode ter várias soluções ou nenhuma solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz

Mensagempor Claudin » Seg Fev 13, 2012 17:59

Correto.

Não estava aparecendo aqui o resto de sua explicação.


:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59