por Andrewo » Qui Jan 12, 2012 11:40
Olá pessoal, não sei se estou postando no lugar certo, se caso não esteja, algum moderador por favor mova o tópico.
Minha dúvida é a seguinte : Eu sei fazer contas simples pra descobrir o MMC e MDC, mas estava vendo uns problemas e não consegui resolver.São 3 questões:
1 - Se x é um número natural em que mmc(140,x)= 2100 e mdc(140,x)=10, podemos dizer que x :
(a)É um nº primo
(b)É um nº par
(c)É maior que 150
(d)É divisível por 11
(e)É múltiplo de 14
2 - Se x e y são números naturais em que MMC(y,x) =154 e MDC(y,x)=2, podemos dizer que cy:
(a)É um nº primo
(b)É um nº ímpar
(c)É maior que 500
(d)É divisível por 11
(e)É múltiplo de 15
3 - Se x e y são nº naturais em que MMC(y,x)=115 e MDC(y,x)=214, podemos dizer que o resto da divisão de xy por 107 é:
(a)Nº primo
(b)Nº par
(C)Nº maior que 100
(d)É 214
(e)É 115a
Não consigo resolver, talvez exista alguma propriedade pra fazer a conta?
-

Andrewo
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Qui Jan 12, 2012 11:22
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por ant_dii » Qui Jan 12, 2012 12:07
Bom dia.
Para cada um dos exercícios abaixo você poderá usar a relação

Mas ficou confuso os enunciados
Andrewo escreveu:2 - Se x e y são números naturais em que MMC(y,x) =154 e MDC(y,x)=2, podemos dizer que cy:
este o problema é quem é esse

, não seria

. Caso seja como eu disse, use a relação acima e saberá a resposta.
E
Andrewo escreveu:3 - Se x e y são nº naturais em que MMC(y,x)=115 e MDC(y,x)=214, podemos dizer que o resto da divisão de xy por 107 é:
(a)Nº primo
(b)Nº par
(C)Nº maior que 100
(d)É 214
(e)É 115a[/b]
Neste o problema é que a resposta pode ser é um nº par, é maior que 100, mas resta saber se na opção da letra e) esse 115a indica um múltiplo de 115, se o for, essa é a opção correta, mas verifique o enunciado.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Arkanus Darondra » Qui Jan 12, 2012 12:31
Concordo com o ant_dii.
Só que como na questão número 3 ele pergunta sobre o resto (= 0) e não sobre o quociente (= 230), a resposta seria a letra B.
-
Arkanus Darondra
- Colaborador Voluntário

-
- Mensagens: 187
- Registrado em: Seg Dez 26, 2011 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por ant_dii » Qui Jan 12, 2012 12:47
Arkanus Darondra escreveu:Concordo com o ant_dii.
Só que como na questão número 3 ele pergunta sobre o resto (= 0) e não sobre o quociente (= 230), a resposta seria a letra B.
Concordo Arkanus... Não me atentei ao enunciado todo, olhei as alternativas e fiquei curioso sobre 115a... Desculpem-me.
Valewww...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Andrewo » Qui Jan 12, 2012 17:23
ant_dii escreveu:Arkanus Darondra escreveu:Concordo com o ant_dii.
Só que como na questão número 3 ele pergunta sobre o resto (= 0) e não sobre o quociente (= 230), a resposta seria a letra B.
Concordo Arkanus... Não me atentei ao enunciado todo, olhei as alternativas e fiquei curioso sobre 115a... Desculpem-me.
Valewww...
Peço desculpas AÍ, parceiros, eu errei na hora de digitar, não é 115a e sim só 115. E de fato a resposta é B
Obrigado pela ajuda.
Só mais uma coisa : como eu leio esse enunciado? -
a multiplicação de mmc e mmc é igual à multiplicação dos produtos? 
-

Andrewo
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Qui Jan 12, 2012 11:22
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por ant_dii » Sex Jan 13, 2012 00:21
Lê-se "O produto do mínimo multiplo comum com o máximo divisor comum de dois números é igual ao produto dos dois números"...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.