MAP0151
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por matematica_mat » Sáb Out 29, 2011 13:05
Onde acho a teoria de maximos e meninos relativos na integra??? com grande abordagem para derivadas
-
matematica_mat
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Out 29, 2011 12:53
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: adm
- Andamento: cursando
Voltar para Cálculo Numérico e Aplicações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Diferenciais - Erro máximo e relativo
por Vencill » Ter Dez 02, 2014 17:21
- 2 Respostas
- 13537 Exibições
- Última mensagem por Vencill

Qua Dez 03, 2014 16:22
Cálculo: Limites, Derivadas e Integrais
-
- [ Equação de 3º Grau ] Encontrar valor de máximo relativo
por Fabio Ribeiro » Qui Jun 05, 2014 12:30
- 4 Respostas
- 8677 Exibições
- Última mensagem por Fabio Ribeiro

Sáb Jun 07, 2014 18:56
Funções
-
- [Máximo e Mínimos]
por dehcalegari » Qui Jun 20, 2013 18:58
- 2 Respostas
- 8668 Exibições
- Última mensagem por dehcalegari

Qui Jun 20, 2013 22:47
Cálculo: Limites, Derivadas e Integrais
-
- Pontos maximo e minimos de uma funçao e ponto de sela
por b11adriano » Sáb Out 04, 2014 14:56
- 2 Respostas
- 2689 Exibições
- Última mensagem por Marcos Ueder

Qui Set 17, 2015 18:09
Cálculo: Limites, Derivadas e Integrais
-
- Risco relativo
por gustavomonj » Sex Mar 25, 2011 01:30
- 1 Respostas
- 1958 Exibições
- Última mensagem por Neperiano

Sex Out 21, 2011 16:16
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.