• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo 3: Critério da raiz

Calculo 3: Critério da raiz

Mensagempor Shuhey » Ter Abr 28, 2009 16:21

Olaa
Estou tendo problemas pra resolver um exercicio, ele é bem basico creio eu, primeiro da minha lista xD
Mas não estou conseguindo provar
É de calculo 3, Critério da Razão

Calcule lim (an)^1/n com n-> infinito e sabendo que an = n!/n^n

Verbalizado: lim de raiz n-ésima de an, com n tendendo a infinito, e sabendo que an = n fatorial dividido por n elevado a n.

Se alguém puder resolver ;)
Shuhey
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 28, 2009 16:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatronica
Andamento: cursando

Re: Calculo 3: Critério da raiz

Mensagempor Molina » Ter Abr 28, 2009 18:28

Olá.

Nao sei se é isso que voce quer saber.
Mas pelo Critério da Raiz da pra ve se uma série converge ou nao.

O Critério da Raiz é: \lim_{n\rightarrow\propto}\sqrt[n]{{a}_{n}}

Neste caso o resultado desse limite informa se converge ou nao.
O resultado sendo < 1: converge
O resultado sendo > 1: diverge
O resultado sendo = 1: nada pode-se afirmar

Nao sei se era isso que voce queria.
Mas espero ter ajudado.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo 3: Critério da raiz

Mensagempor Shuhey » Ter Abr 28, 2009 23:24

Olaa


Ahh então, as propriedades do critério eu sei sim, mas o q eu queria resolver era akele problema:

\lim_{x\rightarrow\infty} \sqrt[n]{an}

Sabendo que an = \frac{n!}{{n}^{n}}

A unica coisa q eu consigo mexer nessa expressão é tirar o {n}^{n} da raiz.
Dai fica

\lim_{x\rightarrow\infty} \frac{\sqrt[n]{n!}}{n}

E eu não sei o q fazer com akele n! dentro da raiz, alguém sabe como fazer?
Agradecido ^^
Shuhey
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 28, 2009 16:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatronica
Andamento: cursando

Re: Calculo 3: Critério da raiz

Mensagempor Molina » Qua Abr 29, 2009 13:39

Boa tarde.

O problema informa que obrigatoriamente voce tem que usar o Critério da raiz? Caso não, sugiro que você use o Critério da razão. Daí acho que sai..

Só lembrando o critério da razão: \lim_{x\rightarrow\propto}\frac{{a}_{n+1}}{{a}_{n}}

Espero ter ajudado!

Bom estudo. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo 3: Critério da raiz

Mensagempor Shuhey » Qua Abr 29, 2009 23:12

É então pelo critério da raiz eu sei fazer, mas o exercicio pede pra usar o critério da raiz, mas ta sussegadissimo, eu fui até meu professor perguntar sobre o exercicio e ele flw que isso ele não ia cobrar rsrsr

Agradeço atenção :)

Abraços
Shuhey
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 28, 2009 16:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatronica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 25 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D