• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Por favor, ajude a simplificar

Por favor, ajude a simplificar

Mensagempor baril » Qua Set 28, 2011 22:32

De \sqrt\frac{x}{y} - \sqrt\frac{y}{x} \over \sqrt\frac{1}{x} - \sqrt\frac{1}{y}

Em \sqrt{x} + \sqrt{y}


Eu já tentei de tudo... até multiplicar em cima e baixo por \sqrt{x}\sqrt{y} mas não consigo enxergar e chegar a \sqrt{x} + \sqrt{y} . Alguém caridoso pode fazer e explicar em detalhes para eu entender por favor? Desde já imensamente agradecido.
baril
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 28, 2011 22:15
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Por favor, ajude a simplificar

Mensagempor LuizAquino » Qui Set 29, 2011 10:09

Considerando x e y números positivos e não nulos, temos a expressão:

\frac{\sqrt\frac{x}{y} - \sqrt\frac{y}{x}} { \sqrt\frac{1}{x} - \sqrt\frac{1}{y}}

Usando a propriedade \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, ficamos com:

\frac{\frac{\sqrt{x}}{\sqrt{y}} -\frac{\sqrt{y}}{\sqrt{x}}} { \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}}}

Efetuando a subtração entre as frações, temos que:

\frac{\frac{x-y}{\sqrt{y}\sqrt{x}}}{\frac{\sqrt{y} - \sqrt{x}}{\sqrt{x}\sqrt{y}}}

Efetuando a divisão entre as frações, resulta em:

\frac{x-y}{\sqrt{y}-\sqrt{x}}

Multiplicando o numerador e o denominador por \sqrt{y} + \sqrt{x}, no final temos que:

-\left(\sqrt{x} + \sqrt{y}\right)

Reveja o seu gabarito, pois essa é a expressão correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.