• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação]

[Inequação]

Mensagempor Aliocha Karamazov » Seg Set 12, 2011 01:27

Caros, vou postar o exercício e minha resolução. O post ficou um pouco maior do que é de costume, porque eu fiz questão de colocar todas as passagens, uma vez que, pelo fato de minha resposta estar "quase" certa, provavelmente eu errei em alguma passagem. Parece complicado, mas não é. Gostaria da colaboração de alguém para que eu possa saber onde e por que errei.

Dado \mathcal{E}>0 arbitrário, determine m\in\mathds{N}* tal que a_{n}\in(L-\mathcal{E},l+\mathcal{E}) para todo n \geq m, onde a_{n}=\frac{1}{2+\sqrt{\frac{n+1}{n}}} e L=\frac{1}{3}

Eu fiz dessa maneira:

|a_{n}-L|<\mathcal{E} \Rightarrow \left|\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right|<\mathcal{E}

Mas, \left(\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right)<0, \forall n \in \mathds{N}* (Isso é fácil provar, mas eu omiti para encurtar). Portanto, \left|\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right|= -\left(\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right)

Voltando à inequação:

-\left(\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right)<\mathcal{E} \Leftrightarrow \left(\frac{1}{2+\sqrt{\frac{n+1}{n}}} -\frac{1}{3}\right)>-\mathcal{E}

\Leftrightarrow \frac{1-\frac{2+\sqrt{\frac{n+1}{n}}}{3}}{2+\sqrt{\frac{n+1}{n}}}>-\mathcal{E} \Leftrightarrow 1-\frac{2+\sqrt{\frac{n+1}{n}}}{3}>-\mathcal{E}  \left(2+\sqrt{\frac{n+1}{n}}\right)

\Leftrightarrow 3 -\left(2+\sqrt{\frac{n+1}{n}}\right)>3\mathcal{E}\left(2+\sqrt{\frac{n+1}{n}}\right)

\Leftrightarrow 1- \sqrt{\frac{n+1}{n}}>-6\mathcal{E} -3\mathcal{E}\sqrt{\frac{n+1}{n}} \Leftrightarrow 3\mathcal{E}\sqrt{\frac{n+1}{n}} -\sqrt{\frac{n+1}{n}}>-6\mathcal{E}-1

\sqrt{\frac{n+1}{n}}(3\mathcal{E}-1)>-6\mathcal{E}-1\Leftrightarrow \sqrt{\frac{n+1}{n}}>\frac{-6\mathcal{E}-1}{3\mathcal{E}-1}

Agora, é preciso elevar ambos lados ao quadrado. No entanto, o membro à direita é negativo para alguns valores de \mathcal{E}. Resolvendo a inequação \frac{-6\mathcal{E}-1}{3\mathcal{E}-1}>0, encontra-se -\frac{1}{6}<\mathcal{E}<\frac{1}{3}.

Elevando-se ambos os lados ao quadrado, segue que:

\frac{n+1}{n}>\left(\frac{-6\mathcal{E}-1}{3\mathcal{E}-1}\right)^2

Com mais algumas manipulações algébricas, (omitidas para não deixar o post ainda mais extenso), chega-se em:

\frac{1}{n}>\frac{27\mathcal{E}^2 +18\mathcal{E}}{9\mathcal{E}^2 -6\mathcal{E} +1} \Leftrightarrow n<\frac{9\mathcal{E}^2 -6\mathcal{E} +1}{27\mathcal{E}^2 +18\mathcal{E}}

No gabarito, está n>\frac{9\mathcal{E}^2 -6\mathcal{E} +1}{27\mathcal{E}^2 +18\mathcal{E}}

Realmente, não faz sentido chegar a um resultado em que n deve ser menor do que alguma coisa, pois o enunciado pede um m tal que\forall n\geq m, a_{n}\in(L-\mathcal{E},l+\mathcal{E})

Gostaria que alguém apontasse onde eu errei.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Inequação]

Mensagempor MarceloFantini » Seg Set 12, 2011 05:57

Aliocha, não consegui encontrar o seu erro, mas verifique como eu fiz:

\frac{1}{3} - \frac{1}{2 + \sqrt{\frac{n+1}{n}}} < \varepsilon \iff \frac{1}{3} - \varepsilon < \frac{1}{2 + \sqrt{\frac{n+1}{n}}} \iff 1 - 3 \varepsilon < \frac{3}{2 + \sqrt{\frac{n+1}{n}}} \iff

\iff \frac{1}{1 - 3 \varepsilon} > \frac{2 + \sqrt{\frac{n+1}{n}}}{3} \iff \frac{3}{1 - 3 \varepsilon} > 2 + \sqrt{\frac{n+1}{n}} \iff

\iff \frac{3 - 2(1 - 3 \varepsilon)}{1 - 3 \varepsilon} > \sqrt{\frac{n+1}{n}} \iff \frac{1 + 6 \varepsilon}{1 - 3 \varepsilon} > \sqrt{\frac{n+1}{n}} \iff

\iff \frac{1 +12 \varepsilon + 36 \varepsilon^2}{1 -6 \varepsilon +9 \varepsilon^2} > 1 + \frac{1}{n} \iff

\iff \frac{1 +12 \varepsilon +36 \varepsilon - 1 +6 \varepsilon - 9 \varepsilon^2}{1 -6 \varepsilon +9 \varepsilon^2} > \frac{1}{n} \iff

\iff \frac{27 \varepsilon^2 +18 \varepsilon}{9 \varepsilon^2 -6 \varepsilon +1} > \frac{1}{n} \iff n > \frac{9 \varepsilon^2 -6 \varepsilon +1}{27 \varepsilon^2 +18 \varepsilon}

A álgebra ficou um pouco pesada neste e eu tentei fazer um caminho mais rápido do que você tentou para evitar maiores confusões. Veja se consegue entender tudo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Inequação]

Mensagempor Aliocha Karamazov » Seg Set 12, 2011 14:32

Obrigado, MarceloFantini. Ficou bem claro, consegui reproduzir sua resolução. Acho que não vale mais a pena tentar encontrar onde eu errei, teve ter sido em alguma passagem...

Agora deu certo!
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.