• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação 2º Grau!

Equação 2º Grau!

Mensagempor Jhosmy » Dom Jul 03, 2011 21:19

Na equação {2px}^{2} + 3pqx + 3q = 0, a soma das raízes é 9 e o produto 12. calcule p + q.

tenso esse exercício.

Saca esse aqui,

{2mx}^{2} -(3m +2 )x + 3 = 0 tenha raízes reais e desiguais.
Como assim desiguais? tenso.
Jhosmy
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jun 01, 2011 15:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Nenhuma
Andamento: cursando

Re: Equação 2º Grau!

Mensagempor luiz syncode » Dom Jul 03, 2011 22:31

baskara:
\\
x_1 = \frac{-b - \sqrt[]{b^2 - 4ac}}{2a} \\
x_2 = \frac{-b + \sqrt[]{b^2 - 4ac}}{2a}

onde para
a = 2p
b = 3pq
c = 3q

substituindo
\\
x_1 = \frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} \\
x_2 = \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}

se
x_1 + x_2 = 9 \\e\\
x_1 * x_2 = 12

temos que
\\
\frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} + \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}  = 9 \\
\frac{-3pq - \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p} * \frac{-3pq + \sqrt[]{(3pq)^2 - 4*2p*3q}}{2*2p}  =  12
que é um sistema

simplificando temos:
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
(-3pq)^2 - ( (3pq)^2 - 4*2p*3q} )=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 4*2p*3q=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 4*2p*3q=  12 * (4p)^2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\
\frac{-6pq}{2*2p}  = 9 \\ e \\
 2q= 16p

acho que pode continuar daqui.


para a proxima vc devera fazer algo semelhante, mas tendo em consideração que o delta de baskara deve ser obrigatoira mente positivo para ter 2 x reais. se for negativo, a raiz de numero negativo é complexa. e se for zero, vc só terá uma raiz tocando o eixo x.

O x_1 e o x_2 devem ser diferentes.

Bom estudo
luiz syncode
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 01, 2011 12:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica, Fisica, Computação, Lógica
Andamento: cursando

Re: Equação 2º Grau!

Mensagempor MarceloFantini » Seg Jul 04, 2011 06:35

Jhosmy, note que o primeiro sai facilmente pelas relações de Girard:

x_1 + x_2 = \frac{-b}{a} = \frac{-3pq}{2p} = 9 \iff q = -6

x_1 \cdot x_2 = \frac{c}{a} = \frac{3q}{2p} = 12 \iff p = \frac{q}{8} = \frac{-3}{4}

Portanto, p+q= -6 - \frac{3}{4} = - \frac{27}{4}

No segundo, com raízes desiguais eu imagino que ele queira apenas dizer que são distintas, ou seja x_1 \neq x_2. Basta calcular o discriminante e definir que ele seja maior ou igual a zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação 2º Grau!

Mensagempor Jhosmy » Seg Jul 04, 2011 13:05

Valeu mesmo pessoal.
ajudou muito.
Jhosmy
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jun 01, 2011 15:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Nenhuma
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D