• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação cujos denominadores são equações de 2º grau

Inequação cujos denominadores são equações de 2º grau

Mensagempor Caroline Oliveyra » Dom Jun 26, 2011 13:50

Olá!!
Mais uma vez eu aqui com essas equações... *-)

Enfim. Continuanado a minha querida lista de cálculo encontrei uma questão que é pra achar o conjunto solução da seguinte inequação:

\frac{x}{x^2 - 5x + 6} + \frac{1}{2x} \geq \frac{2x}{x^2 - 4x + 3}

Eu comecei a resolver da seguinte forma: Primeiro multipliquei o numerador e o denominador de cada uma pelo denominador da outra para igualar os dois denominadores. Isso resultou na inequação

\frac{2x^2}{2x^3 - 10x^2 + 12x} + \frac{x^2 - 5x +6}{2x^3 - 10x^2 + 12x} \geq \frac{2x}{x^2 - 4x + 3}

Somando as duas...

\frac{3x^2 - 5x + 6}{x^3 - 5x^2 + 6x} \geq \frac{2x}{x^2 - 4x +6}

Depois disso eu multipliquei o primeiro membro pelo deniminador do segundo membro:

\left(x^2 - 4x +3 \right). \frac{3x^2 - 5x + 6}{x^3 - 5x^2 + 6x} \geq 2x

Multiplicando tudo no final deu isso aqui:

\frac{3x^4 - 17x^3 + 35x^2 +18}{x^3 - 5x^2 + 6x} \geq 2x

Ok, até aí tudo bem. Quando eu cheguei nesse ponto achei melhor simplificar primeiro essa fração pra depois somar o 2x, pra ficar menos complicado.
Então eu fatorei o termo independente da equação de 4º grau (numerador) e fui testando os números que apareceram na expressão. Encontrei que 1 é raiz. Então apliquei o dispositivo de Briot- Ruffini e encontrei a equação de 3º grau:

3x^3 - 14x^2 - 21x - 18

O que eu pretendia fazer agora era testar novamente os números que eu encontrei na fatoração (tanto os positivos quanto os negativos), já que o termo independente é o mesmo, e achar mais uma raiz pra eu poder aplicar Briot Ruffini de novo e chagar a uma equação de segundo grau. Dessa forma, eu encontraria as outras duas raizes e decomporia essa equação de 4º grau em uma de 1º grau: coef. do maior termo . \left(x - {r}_{1} \right) . \left(x - {r}_{2} \right) . \left(x - {r}_{3} \right)
Acontece que nessa equação de 3º grau que eu encontrei nenhum número que eu testei deu zero, ou seja, não consegui encontrar mais uma raiz.

Eu não sei como continuar... Não encontrar a raiz significa que a equação não tem raizes? Ou eu errei em algum lugar e não estou conseguindo perceber? E se a expressão não tem raizes como eu faço pra simplificar?


Grande beijo!! :-D
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Inequação cujos denominadores são equações de 2º grau

Mensagempor MarceloFantini » Dom Jun 26, 2011 15:53

Caroline, você cometeu um erro comum ao trabalhar com inequações. Aqui está o seu erro:

\frac{3x^2 -5x +6}{x^3 -5x^2 +6x} \geq \frac{2x}{x^2 -4x +6} \not\Rightarrow (x^2 -4x +3) \cdot \frac{3x^2 -5x +6}{x^3 -5x^2 +6x} \geq 2x

Isso nem sempre é verdade, depende do valor de x! Portanto em problemas assim você tem que agrupar todas os termos de um único lado e analisar o sinal. Neste caso:

\frac{3x^2 -5x +6}{x^3 -5x^2 +6x} - \frac{2x}{x^2 -4x+6} \geq 0

Agora deixe tudo numa mesma fração e avalie onde a expressão é zero ou positiva.

Dica: ao invés de fazer os produtos como você fez no começo, encontre as raízes das frações originais e tornará tudo mais fácil. :) Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D