• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação logaritmica

Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 14:48

Sejam as seguintes funções:

f(x)=2x-2
g(x)=log_{2}(x+2)

O gráfico destas duas funções interceptam-se em dois pontos distintos, como mostra o gráfico:
Ecra#1.jpg
Ecra#1.jpg (12.65 KiB) Exibido 2218 vezes


De uma forma algébrica/analitica, como posso encontrar os valores de x, resolvendo a equação:

2x-2=log_{2}(x+2)

Obrigado.
Editado pela última vez por joaofonseca em Qui Jun 16, 2011 20:11, em um total de 1 vez.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor Molina » Qui Jun 16, 2011 16:38

Boa tarde.


Fazendo a equação:

2x-2=log_{2}(x+2)

2^{2x-2}=x+2

\frac{2^{2x}}{2^2}=x+2

4^{x}=4x+8 \Rightarrow x = 2


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 19:28

Falta encontrar a outra solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 20:14

Molina obrigado pela ajuda.

Mas também estava a pensar no mesmo que o MarceloFantini. E a outra solução?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 20:21

Apesar de ter feito a pergunta, já sabia a resposta: ela só pode ser encontrada aproximadamente, não existe solução analítica para isso. A menos que seja num curso de cálculo numérico, não pedirá as duas raízes analiticamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação logaritmica

Mensagempor joaofonseca » Qui Jun 16, 2011 20:59

Molina que propriedades dos algoritmos utilizas-te para resolver o ultimo passo:

4^x=4x+8\Leftrightarrow x=2

Obrigado novamente
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação logaritmica

Mensagempor MarceloFantini » Qui Jun 16, 2011 21:05

Sei que a pergunta foi direcionada ao Molina, mas acredito que não haja propriedade em específico, a solução deve ter sido encontrada por inspeção.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)