• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo 1:Limites com Indeterminação e que possue radicaçião

Calculo 1:Limites com Indeterminação e que possue radicaçião

Mensagempor MarcusPassos » Qui Mar 03, 2011 17:37

f^\prime(x)\ =         \lim_{\ x\to9}\frac{2x-18}{\sqrt{x}-3}

Gostaria de pedir a ajudar de vocês para responder esta questão , eu multiplico e divido pelo conjugado , mas não acho o resultado correto.

Grato desde ja!
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor LuizAquino » Qui Mar 03, 2011 18:40

MarcusPassos escreveu:eu multiplico e divido pelo conjugado , mas não acho o resultado correto.

Poste aqui o que você fez. Desse modo, podemos achar onde está o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarcusPassos » Qui Mar 03, 2011 19:06

eu paro nisso , porq nao da certo ->
\lim_{x\to 9}\ \frac{2\x(\sqrt{x})-6x-18x-54}{x-9}
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarceloFantini » Qui Mar 03, 2011 20:40

Você está fazendo a distributiva, o que dificulta sua vida:

\lim_{x \to 9} \frac {2(x-9)(\sqrt{x} +3)}{x-9} = \lim_{x \to 9} 2(\sqrt{x} + 3) = 12
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo 1:Limites com Indeterminação e que possue radica

Mensagempor MarcusPassos » Qui Mar 03, 2011 21:22

Muito , Muito obrigado mesmo amigo ,ja tava arrancando os poucos fios de kbelo que tenho :D
MarcusPassos
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2011 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. mecatronica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.