• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Foco de uma parabola

Foco de uma parabola

Mensagempor PedroSantos » Qua Fev 23, 2011 13:26

Seja a função dada pela expressão y={x}^{2}-4.

É fácil concluir que a concavidade da parabola é virada para cima e que os seus zeros são -2 e 2. Pode-se ainda concluir que as coordenadas do vertice são (0,-4), pois se os zeros são -2 e 2 e a parabola é uma figura com simetria, a abscissa será \frac{(2-2)}{2}=0 e a ordenada y={0}^{2}-4 \Leftrightarrow y=-4. Conforme se pode verificar na figura:

parabola.jpg


E as coordenadas do foco e a recta da directriz?Como posso achar estes dados a partir da expressão inicial?
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Foco de uma parabola

Mensagempor Dan » Qua Fev 23, 2011 16:16

Olá PedroSantos.

Você precisa primeiramente passar a equação para a forma {(x-h)}^{2} = 4p(y-k). Pode usar completamento de quadrados, por exemplo.

Depois disso você calcula o foco e a diretriz:

Foco: (h, k+p)
Diretriz: y=k-p

No caso dessa parábola, a equação será {(x-0)}^{2} = 1(y+4)

A partir disso você calcula foco e diretriz. Não esqueça que 4p = 1 e que k = -4.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Foco de uma parabola

Mensagempor LuizAquino » Qua Fev 23, 2011 16:22

Dos conhecimentos de Geometria Analítica, sabemos que uma parábola de foco F=(0, p) e reta diretriz r : y=-p tem equação igual a y = \frac{1}{4p}x^2.

Para transformar a sua equação nesse formato, vamos fazer uma translação do sistema de eixos de modo que o novo sistema terá a sua origem no ponto (0, -4) do eixo antigo. Isto é, teremos o novo sistema y_1 = y+4 e x_1 = x. Sendo assim, a equação y=x^2-4 fica equivalente a y_1 = x_1^2 no novo sistema.

Nesse novo sistema, temos que o foco será F_1 = \left(0,\, \frac{1}{4}\right) e a reta diretriz será r_1 \,:\, y_1 = -\frac{1}{4}.

Agora, voltando novamente para o sistema de eixos original, teremos que o foco será F=\left(0, -\frac{15}{4}\right) e a reta diretriz será r \,:\, y = -\frac{17}{4}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Foco de uma parabola

Mensagempor PedroSantos » Qua Fev 23, 2011 22:17

Obrigado pela ajuda, aos dois.A minha dificuldade estava mesmo em colocar a expressão inicial na forma {(x-h)}^{2}=4p(y-k).
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Foco de uma parabola

Mensagempor PedroSantos » Qui Fev 24, 2011 10:24

Entretanto estive a verificar outro exemplo.

y=x^2-5x+6

Aqui é necessário colocar na forma y=a(x-h)^{2}+k
É preciso achar um número que adicionado a x^2-5x transforme a expressão num trinómio quadrado prefeito. Sabemos que 2ab=5x e que a=x logo b=5/2, assim b^2=\frac{25}{4}

Por isso o trinomio do quadrado perfeito fica x^2-5x+\frac{25}{4}.Agora é necessário adicionar o simétrico do número que utilizamos como artificio.
Fica :
y=x^2-5x+\frac{25}{4}+6-\frac{25}{4}

Depois de simplificar a expressão ficamos com

(x-\frac{5}{2})^2=1(y+\frac{1}{4})

Temos:
h=5/2
k=-1/4
p=1/4
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Foco de uma parabola

Mensagempor LuizAquino » Qui Fev 24, 2011 10:45

Como você mesmo fez, y=x^2-5x+6 pode ser escrita como y+\frac{1}{4}=\left(x-\frac{5}{2}\right)^2.

Isso significa que o seu novo sistema de eixos deve ser transladado de modo que sua origem seja no ponto \left(\frac{5}{2},\, -\frac{1}{4}\right) do sistema atual. Isto é, teremos que x_1 = x - \frac{5}{2} e y_1 = y + \frac{1}{4}.

Nesse novo sistema, a equação da parábola é y_1=x_1^2, e portanto o foco é F_1 = \left(0,\, \frac{1}{4}\right).

Agora, basta transformar esse ponto de volta para o sistema original, obtendo assim F = \left(\frac{5}{2},\, 0\right).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.