• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão ITA

Questão ITA

Mensagempor Pedro123 » Ter Fev 22, 2011 20:55

Galera, não consigo fazer essa questão de jeito nenhum, ve se alguem me da uma força abraços

(ITA - 1995) Considere C uma circunferência

centrada em O e raio 2r, e t a reta tangente a C num ponto T. Considere também A um ponto de C tal que AÔT =? é um ângulo agudo. Sendo B o ponto de t tal que o segmentoAB é paralelo ao segmento
OT, então a área do trapézio OABT é igual a:

(A) r²(2 cos? - cos 2?)
(B) 2r²(4 cos? - sen 2?)
(C) r²(4 sen? - sen 2?)
(D) r²(2 sen? + cos?)
(E) 2r²(2 sen 2? - cos 2?)
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Questão ITA

Mensagempor Renato_RJ » Ter Fev 22, 2011 22:55

Campeão, você teria a resposta ? Quero dizer, qual é a opção certa, pois fiz umas contas aqui e cheguei a um resultado, mas como geometria euclidiana não é a minha "praia", posso ter errado algo, e com o resultado posso postar a solução (ou não, se eu tiver errado), pois pensei assim:

Teremos um trapézio, a área do trapézio é A = \frac{AB + OT}{2} \cdot h sendo h a altura do trapézio, sendo que OT = 2r.

AB seria a soma do trecho AK (sendo K o ponto de projeção de O no segmento AB) com 2r (projeção de OT no segmento AB), então para calcular h você teria que utilizar coseno de B, sendo B = 180 - \Theta, para achar AK:

AK = OA \cdot sen B

Então é só montar a equação da área com esses valores...

Abs,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Questão ITA

Mensagempor LuizAquino » Ter Fev 22, 2011 23:41

A figura abaixo ilustra os dados do exercício.
ita-circulo.png
ita-circulo.png (16.02 KiB) Exibido 2826 vezes


A área do trapézio será dada por A_T =  \frac{(\overline{OT} + \overline{AB})\overline{TB}}{2}.

Facilmente determinamos que \overline{TB} = \overline{DA} = 2r\sin \theta, usando o triângulo ODA.

Como \overline{OT} = 2r, falta determinar \overline{AB}. Para isso, vamos aplicar o Teorema de Pitágoras no triângulos ODA (lembrando que \overline{TB} = \overline{DA}).

(2r)^2= \overline{TB}^2 + (\overline{OT} - \overline{AB})^2 \, \Rightarrow \overline{AB} = 2r(1-\cos \theta) (fica como exercício desenvolver essa parte :) )

Substituindo tudo para calcular a área:
A_T =  \frac{[2r + 2r(1-\cos\theta)](2r\sin\theta)}{2} = r^2(4-2\cos\theta)\sin\theta = r^2(4\sin\theta-2\sin\theta\cos\theta) = r^2(4\sin\theta-\sin 2\theta)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão ITA

Mensagempor Renato_RJ » Qua Fev 23, 2011 11:28

Luiz, cheguei ao mesmo resultado que você, mas fui por um lado mais complicado.. Hehehehe....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Questão ITA

Mensagempor Pedro123 » Qua Fev 23, 2011 20:49

Valeu a todos galera, olha a besteira, tava fazendo o mais dificil, fazia tudo certo e esquecia de botar a area do triangulo dividida por 2 kkkkkkkk
mas muito obrigado a todos
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: