• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor john » Dom Fev 13, 2011 16:19

Olá pessoal!
Estou com dúvidas nas seguintes integrais:

\int{5e^x-x^2}

Não vejo forma de integrar 5e^x

\int{2\sqrt (x)}

Não vejo forma de integrar 2\sqrt (x)

\int{(\sqrt 2x) + x}

O x eu sei integrar. Não sei é a outra parte da expressão.

\int{e^x+3x^2}

Não consegui de todo integrar o 3x^2

Preciso mesmo de ajuda, visto que tenho exame para a semana e estou mesmo confuso nesta matéria. Obrigado pela atenção!
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integrais

Mensagempor Neperiano » Dom Fev 13, 2011 16:35

Ola

Peço desculpa que não sei usar o latex

Vou resolver uma delas, a mais dificil e dar dicas para resolver as outras

Integral de (raiz de 2x) + x
Integral de raiz de 2x = (2x)^1/2 + x

Como é soma divida em duas integrais

integral de (2x)^1/2 + Integral de x
u = 2x
du = 2

Logo integral de (u^1/2).1/2
Passe o 1/2 pra frente
1/2 Integral de u^1/2

1/2 + 1 = 3/2

1/2.(u^3/2)/3/2
1/3.(2x)^3/2 + (x^2)/2

Algumas dicas

1- Sempre que for adição ou subtração divida em duas integrais
2- Quando tiver numero passe ele pra fora da integral
3 - Procure sempre o U quando houver uma função dentro da outra f(g(x))
4 - raix de x = x^/2

Espero ter ajudado

Qualquer duvida

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integrais

Mensagempor john » Dom Fev 13, 2011 16:44

Obrigado pela pronta resposta e pelas dicas.
Contudo eu não percebi esta parte:

Logo integral de (u^1/2).1/2
Passe o 1/2 pra frente
1/2 Integral de u^1/2

Poderia-me ajudar?
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integrais

Mensagempor Neperiano » Dom Fev 13, 2011 16:48

Ola

Claro claro

Quando voce tem um numero voce passa ele pra fora da integral e depois multiplique ele

Ex:

Integral de 5x^2
5 Integral de x^2
5.(x^3)/3
(5x^3)/3

Entendeu?

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integrais

Mensagempor john » Dom Fev 13, 2011 16:59

Mais uma vez obrigado. Nesse exemplo eu percebi. Mas o outro está me a fazer alguma confusão. Como a derivada de u é 2 não deveríamos colocar um 2 antes do 2x e 1/2 fora para compensar?

Obrigado!
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integrais

Mensagempor Neperiano » Dom Fev 13, 2011 17:54

Ola

Hehehhe a derivada de 2x = 2, na verdade eu so substitui por u pra facilita

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integrais

Mensagempor john » Dom Fev 13, 2011 19:16

E o 1/3 do fim vem de onde? Estou confuso.

Obrigado.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integrais

Mensagempor Neperiano » Dom Fev 13, 2011 19:32

Ola

1/2.(u^3/2)/3/2

Passei ele pra cima ao inverso

1/2.(u^3/2).2/3

Dai eu multiplico e fica 2/6 = 1/3

Espero ter ajudado

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Integrais

Mensagempor john » Dom Fev 13, 2011 20:27

Ah ok. Já percebi. Muito obrigado.
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D