por Jefferson » Qui Nov 18, 2010 12:58
Todo paralelogramo se origina da deformação de um retângulo. Simplificando, todo retângulo possui lados opostos iguais e ângulos internos iguais a 90 graus. No paralelogramo, tal como no retângulo,os lados opostos são iguais. Mas os ângulos internos são diferentes de 90 graus. Mas, como nem tudo esta perdido. Eu deformo o ângulo, mas ele continua ocupando a mesma área. Beleza, então área do paralelogramo = área do retângulo que deu origem = base x altura.
Nesse seu paralelogramo a base esta dividida em 6 partes. Chamando cada parte de x.
Base = 6x
altura = h
área do paralelogramo = k
Concluímos que x.h = K/6
A partir dai foi criado um trapézio de base menor = x, base maior = 2x e altura a mesma do paralelogramo.
como sabemos, a área do trapézio é dada pela semi soma das bases multiplicada pela altura.
entao: Chamando área do trapézio de A.
A = ( x +2x)/2 isto tudo multiplicado por h.
A = (3xh )/2
como xh = K/6
A = (3k)/(6.2)
A= K/4
-
Jefferson
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Nov 16, 2010 23:18
- Localização: Vila Velha - ES
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área Sombreada
por Balanar » Sex Nov 19, 2010 14:14
- 5 Respostas
- 4127 Exibições
- Última mensagem por Pedro123

Sex Nov 19, 2010 16:01
Geometria Plana
-
- Área Sombreada-2
por Balanar » Sex Nov 19, 2010 16:55
- 2 Respostas
- 1933 Exibições
- Última mensagem por Rogerio Murcila

Sex Nov 19, 2010 18:02
Geometria Plana
-
- Área Sombreada-3
por Balanar » Sex Nov 19, 2010 18:13
- 1 Respostas
- 1640 Exibições
- Última mensagem por MarceloFantini

Sex Nov 19, 2010 18:21
Geometria Plana
-
- Qual é em cm ² a área sombreada
por leticiapires52 » Ter Abr 08, 2014 11:28
- 2 Respostas
- 1852 Exibições
- Última mensagem por Russman

Qua Abr 09, 2014 23:51
Geometria Plana
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4271 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.