• Anúncio Global
    Respostas
    Exibições
    Última mensagem

raciocíno lógico matemático

MAT0349
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

raciocíno lógico matemático

Mensagempor jaquecox » Ter Mai 31, 2011 19:55

olá... tenho feitos algumas provas do CESPE e percebí que cai muito questões assim e não sei raciocinar em cima delas:
a soma de 3 números inteiros positivos é igual ao maior número inteiro de 5 algrismos distintos. Se adicionarmos a cada um dos números o maior número inteiro de 3 algarismos, a nova soma será igual a :
a) 102996
b) 102960
c) 102876
d) 101726
e) 101762

E agora?????
jaquecox
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Abr 26, 2011 21:34
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: raciocíno lógico matemático

Mensagempor carlosalesouza » Qua Jun 01, 2011 00:03

Veja o seguinte... primeiro, o maior número inteiro de 5 algarismos distintos é 98765, correto?

os três números são a,b,c\in\mathbb{Z}|a+b+c=98765, de acordo?

o maior número de 3 algarismos é 999 (o problema não fala em algarismos distintos... isso é meio que uma pegadinha), certo?

então, a resposta é:
\\
(a+999)+(b+999)+(c+999) = R\\
a+b+c +3\times 999 = R

Sendo a+b+c=98765, então:
\\
R=98765+3\times 999\\
R=98765+2997= 101762

O detalhe é que se fizermos com o maior número de 3 algarismos distintos (987), teremos como resposta 101726, que aparece como opção e, ainda, se fizermos com 99999 para 5 algarismos, teremos 102996... que também está entre as alternativas...

É preciso muito cuidado ao ler esses enunciados... rs

Ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Introdução à Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}