• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Prob. Erro Tipo I] Estatística

Sub-seção para materiais das disciplinas relacionadas à Estatística.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.

Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

[Prob. Erro Tipo I] Estatística

Mensagempor rods2292 » Ter Mar 29, 2016 22:46

Pessoal, estou estudando estatística depois de muitos anos para uma prova de certificação que irei realizar e estou relembrando algumas coisas. Eu me deparei com a questão abaixo e não consegui resolver. Andei relembrando sobre testes de hipóteses e tudo o mais mas não entendi muito bem como resolver essa questão. Alguém poderia me ajudar?

Deseja-se testar H0: \pi = 0,5 versus H1: \pi > 0,5 com base em uma amostra aleatória de tamanho 6 da distribuição Bernouli(\pi). Se a região crítica do teste é dada por \sum_{i=1}^{6} Xi \geq 5, a probabilidade de se cometer o erro tipo I é igual a:

Resp.: \frac{7}{64}

Eu sequer sei direito como iniciar esse exercício haja vista que só vejo exemplos de como se calcular utilizando a distribuição Normal. No enunciado acima a amostra tem tamanho 6 o que não me permite aproximar à uma Normal. Como eu posso resolver essa questão?
rods2292
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 29, 2016 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Atuariais
Andamento: formado

Re: [Prob. Erro Tipo I] Estatística

Mensagempor vitor_jo » Dom Jul 10, 2016 04:09

Estou me enrolando com esse somatório maior igual a cinco... O que isso quer dizer?
Mas a ideia é a seguinte, você não faz por aproximação normal, não.

Supondo que esse somatório quisesse dizer que a região crítica fosse obter um mesmo resultado (sucesso ou fracasso) >=5 vezes... Não é isso que ele quer dizer, eu ainda não entendi bem, mas a ideia COM CERTEZA é essa:

Pela definição de erro tipo 1, você teria: rejeitar H0 quando ela é verdadeira, assim você usaria pi=0.5

No caso, a região crítica seria ter esse resultado (sucesso/fracasso) 5 ou 6 vezes, dentro das observações realizadas. Sendo pi=0.5 (pi=0.5 é verdade, pela definição), [1/2]^(5) +[1/2]^6 =3/64.

Sim, a resposta não bate. É que não entendi exatamente como ele define a região crítica, mas a ideia é essa.

Abraço
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron