• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Corte de uma mola

Sub-seção para materiais das disciplinas relacionadas ao Instituto de Física.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.

Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

Corte de uma mola

Mensagempor Cleyson007 » Qui Dez 13, 2012 17:27

Vamos supor o corte pela metade de uma mola ideal sem massa. Considerando que a mola inteira possuia uma força constante k, qual é a constante de força de cada metade, em termos de k?

Resposta: 2k

E se fosse cortada em três partes iguais?

Resposta: 3k
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Corte de uma mola

Mensagempor fraol » Qui Dez 13, 2012 20:18

Olá Cleyson007, boa noite.

Se a força elástica da mola é constante em todos os casos então:

F = kx = \text{constante}.

No caso de meia mola: kx = {c_2k} \frac{x}{2} => c_2 = 2 e portanto a nova constante é 2k.

No caso de um terço de mola: kx = {c_3 k} \frac{x}{3} => c_3 = 3 e portanto a nova constante é 3k.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Corte de uma mola

Mensagempor Cleyson007 » Qui Dez 13, 2012 21:19

Boa noite Fraol!

Primeiramente, muito obrigado por ajudar.. Você é sempre muito solícito para comigo :y:

Desculpe, mas eu não entendi.. Poderia explicar novamente?

Bom, o procedimento é análogo no caso da divisão em 3 partes. Explique-me a divisão em 2 partes.

Aguardo,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Corte de uma mola

Mensagempor fraol » Qui Dez 13, 2012 21:52

Olá,

Há casos de molas especiais em que a força se mantém constante numa determinada faixa de deslocamento ( exemplos: algumas molas em Y de aço inox, aquelas molas parabólicas, quase retas, dos caminhões e das antigas charretes, etc.). Aí a tal constante acaba variando :!: :?: .

Então voltando ao problema e supondo que a força é constante então variando o deslocamento, variamos o tal k.

O que fiz, então foi supor F = k.x constante, assim quando temos deslocamento igual a x/2

=> F = k.x = K'.x/2 então K' = 2.k.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Corte de uma mola

Mensagempor Cleyson007 » Sex Dez 14, 2012 10:00

Entendi :y:

Obrigado!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Física

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee:


cron