• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Algebra Linear: Igualdade de Subespaços vetoriais

Sub-seção para materiais das disciplinas relacionadas à Álgebra.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.

Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

Algebra Linear: Igualdade de Subespaços vetoriais

Mensagempor leandro_aur » Ter Nov 01, 2011 05:40

Senhores, bom dia.

Eu me deparei com um exercício que diz o seguinte:

Mostre que os dois subespaços em R^3, V=[(2,2,2),(-2,5,2),(8,1,4)] e W=[(1,1,1),(0,7,4)], são iguais.

Eu pensei em adicionar um vetor nulo a W para que os dois subespaços ficassem do mesmo tamanho, e depois aplicar o axioma (u+v)+w=u+(v+w) e com isso provar sua igualdade usando do lado esquerdo o subespaço V e do lado direito o subespaço W, porém não obtive sucesso, não sei se pensei errado, alguma sugestão?

Obrigado. Abraços
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: Algebra Linear: Igualdade de Subespaços vetoriais

Mensagempor MarceloFantini » Ter Nov 01, 2011 15:21

Na verdade o que o exercício quer dizer é que os subespaços de \mathbb{R}^3 gerados são iguais. Para isso, mostre que os vetores que geram o subespaço V são linearmente dependentes, ou seja, é possível tomar uma combinação linear igual a zero mas que nem todos os coeficientes são zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron