• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercício de raciocínio lógico

Materiais sobre Lógica.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

exercício de raciocínio lógico

Mensagempor jaquecox » Seg Mai 30, 2011 21:15

como se chega ao resultado, quero entender o raciocínio:
seja N o menor número inteiro positivo que multiplicado por 33 dá um produto cujos algarismos são todos iguais a 7.É correto afirmar que:
a) N é par
b) o algarismo das unidades de N é 7
c) o algarismo das dezenas de N é menor que 4
d) o algarismo das centenas de N é maior que 5
e) a soma dos algarismos de N é igual a 25
jaquecox
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Abr 26, 2011 21:34
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: exercício de raciocínio lógico

Mensagempor Molina » Ter Mai 31, 2011 02:29

Boa noite.

Seja N o número de alguns algarismos que não conhecemos e não sabemos quantos algarismos possui.

Mas, temos uma certeza que o algarismo da unidade de N é 9, pois _______9 x 33 = 777...777

Com isso já excluimos as alternativas a) e b).

Para descobrir o algarismo da dezena será análogo ao primeiro número:

_______69 x 33 = 777...777

Com isso já excluimos a alternativa c).

Para descobrir o algarismo da centena será análogo aos outros número:

______569 x 33 = 777...777

Com isso já excluimos a alternativa d).

O que nos garante que alternativa correta é a letra e): 23569 :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.