• Anúncio Global
    Respostas
    Exibições
    Última mensagem

mediana...não consigo acertar

Materiais sobre Estatística.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

mediana...não consigo acertar

Mensagempor TEKA » Seg Mar 29, 2010 11:38

gente, bom dia.
desculpem minha ignorancia, já li, reli, fiz exercícios mas infelizmente não consigo acertar uma questão de mediana...
a questão é a seguinte:
a tabela abaixo apresenta os pesos de 1 grupo depessoas e suas respectivas frequencias. não há obs coincidentes com os extremos das classes.
classes freq
40 |-- 50 2
50|-- 60 5
60 |-- 70 7
70 |__ 80 8
80|--90 3
ponto médio de classes 45,55,65,75,85
freq acumulada 2,7,14,22,25
somatóriode freq 25
x.fi 90 275 455 600 255 total somatório 1675
o peso médio do cjto de pessoas em kgf é x.f/n = 1675/25 = 67
agora meu pesadelo o valor aproximadp em kgf do peso mediano do cjto é...eu já fiz já refi e não consigo encontrar os 68 q está no gabarito...eu sei q a mediana tá na 3 classe entre 60 e 70...por favor me ajudem
obrigada
TEKA
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 25, 2010 18:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: g projetos
Andamento: formado

Re: mediana...não consigo acertar

Mensagempor Neperiano » Sex Set 17, 2010 15:36

Ola

Para questões assim a uma outra formula para mediana

me= Li + Hi.([n/2 - Fi-1]/fi)

Desculpe a formula ainda tenho que aprender a usar o latex

Onde:
Li = Limite Inferior da Classe Mediana
Hi = Amplitude da Classe Mediana
Fi = Frequência Simples Absoluta da Classe Mediana
Fi-1 = Frequencia acumulada absoluta da classe anterior

Primeiro devemos ver se n é impar ou par
N= 25 impar
Então usamos

(n+1)/2 = 13
Isso quer dizer que a mediana sera o 13° elemento

Analisando a tabela, concluímos que a mediana esta na classe 3 (60|-70), somando as frequencias ao fim desta classe se tem 14, então aplicando na formula

me = 60+10 ([25/2 -7]/7) = 67,85 arredondando 68.

Pode ser que o livro arredondou, entretanto tive que colocar 7 ali na formula onde na verdade seria 6 que daria 69, pode ser que o livro naum tenha usado 10 de amplitude e sim 9,9999 mas mesmo assim, era pra te dado, mas não se preocupa muito com isso, vou tentar descobrir o que acontece aki

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron