• Anúncio Global
    Respostas
    Exibições
    Última mensagem

capacidade volume

Materiais sobre Cálculo.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

capacidade volume

Mensagempor robertinha » Qui Mai 17, 2012 12:00

clara posui em uma sala de estar um aquario em formato de paralelepipedo retangulo de altura 30 cm, largura 40 cm, e comprimento 50 cm.O volume de agua no aguario de clara é de 80% da capacidade total, o que corresponde a quantos litros? nao sei nem como começar essa conta.
robertinha
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mai 17, 2012 11:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: adm
Andamento: cursando

Re: capacidade volume

Mensagempor Edu-sjc » Qui Mai 17, 2012 14:47

Bom a capacideda máxima de água é fácil de ser calculada:

V=30cm.40cm.50cm=60000{cm}^{3}

Mas o volume de água corresponde à 80% da capacidade total, logo com uma regra de três:

60000{cm}^{3}\Rightarrow100%
x\Rightarrow80%

Logo: x=48000{cm}^{3}

Agora é só passar para litros, nós sabemos que 1L equivale a 1{dm}^{3} , e sabemos que: 1{m}^{3}={10}^{3}{dm}^{3}={10}^{6}{cm}^{3}

Logo: 1{dm}^{3}={10}^{3}{cm}^{3}. Assim:

1{dm}^{3}={10}^{3}{cm}^{3}

y=48000{cm}^{3}

Logo há 48L de água dentro do aquário!

Deve ser isso, espero ter ajudado!flw
Edu-sjc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Out 26, 2011 12:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron